
Motion Control PMC

User Manual – Item No. 21 471-06

PMCprimo SoftPLC

 1 General conditions

 User Manual PMCprimo SoftPLC

1 General conditions

1.1 Copyright

Copyright 2005 Pilz GmbH & Co. KG

All rights reserved. No part of this document may be reproduced (print, photocopy, microfilm, or
any other format), or modified, duplicated or distributed by electronic means, without written
authorisation by Pilz GmbH & Co KG.

1.2 Notes

Pilz GmbH & Co. KG reserves the right to make amendments to this document at any time.

The examples given serve only as illustrations. No guarantee is given for their suitability in
particular applications. Although the utmost care has been taken in the production of this
document, no liability can be accepted for any mistakes that it may contain. We welcome any
suggestions for the improvement of our products, or documentation.

We reserve the right to make technical changes, which lead to the improvement of the product.

1.3 Previous editions

Edition Comments
V1-18-02-2003 First edition: Valid from PMCprimo software version >=1.008
V2-15-05-2003 Valid from PMCprimo software version >=2.000
V3-30-04-2004 Valid from PMCprimo software version >=2.004
V4-10-02-2005 Valid from PMCprimo software version >=2.005
V5-07-06-2005 Valid from PMCprimo software version >=2.006
V6-05-12-2005 Revision

2 Contents

User Manual PMCprimo SoftPLC Page 3

2 Contents

1 General conditions..2
1.1 Copyright ..2
1.2 Notes ..2
1.3 Previous editions ..2

2 Contents...3

3 Contents of illustrations...5

4 Abbreviations and symbols ...6

5 Introduction ...7

6 Manufacturer’s declaration / Safety Instructions...9
6.1 Manufacturer’s declaration..9
6.2 Safety Instructions ..9

7 General description...10

8 News in PMCprimo firmware version 2.005..11

9 Installation of the software...12
9.1 Usage of directories ..12

10 First steps ..12

11 Control configuration..14
11.1 PMCprimo Drive: ..14
11.2 PMCprimo 2+2:...14
11.3 PMCprimo 16+:...14
11.4 PMCprimo Drive2: ..14
11.5 PMCprimo-CAN Input/Output: ..16
11.6 Profibus-DP enhanced Master: ...16
11.7 Profibus-Slave ..19
11.8 Profibus-Slave IC..19

12 Communication with the control ...20
12.1 Kind of connections...20
12.2 Setting of a new connection..22

13 SoftPLC in PMCprimo...24
13.1 Start of the system..24
13.2 Non transient storage..25
13.3 Working storage..26
13.4 Battery back-up storage..26
13.5 Integration of the SoftPLC in PMCprimo ...26
13.6 PMCprimo-programs...28

 2 Contents

Page 4 User Manual PMCprimo SoftPLC

14 Function library primo.lib .. 29
14.1 Versions of Primo.lib .. 30
14.2 Example of a program .. 31
14.3 Global variables.. 32
14.4 The subdivision .. 33
14.5 Auxiliary.. 34
14.6 BusVariables .. 41
14.7 CAN-Net and CAN-open .. 44
14.8 Display ... 52
14.9 Drive... 66
14.10 Encoder .. 69
14.11 Mapping .. 84
14.12 Output ... 141
14.13 Positioncontrol .. 175
14.14 Positioning .. 201
14.15 Referencing .. 246
14.16 Tension Control .. 284
14.17 Wait .. 302

15 Function library primo_tools.lib.. 311

16 Cross reference list PMCprimo-Commands – SoftPLC Functions 312

17 Index .. 315

3 Contents of illustrations

User Manual PMCprimo SoftPLC Page 5

3 Contents of illustrations
Illustration 1: target system 13
Illustration 2: module PLC_PRG 13
Illustration 3: Renamed inputs 15
Illustration 4: Log-in in the control 22
Illustration 5: time response SoftPLC 27
Illustration 6: time response SoftPLC with Motiongenerator 27
Illustration 7: PMCprimo Function library 29
Illustration 8: Example of a function block 31
Illustration 9: Analogue auxiliary output 34
Illustration 10: Simple position allocations 84
Illustration 11: Position allocation for a defined range 85
Illustration 12: position allocation for a cyclic machine 86
Illustration 13: effects positionoffset 87
Illustration 14: Example for softwaredifferential (complex) 88
Illustration 15: Position allocation as equation 89
Illustration 16: Position allocation with differential as equation 89
Illustration 17: Behaviour software clutch 113
Illustration 18: position bound 133
Illustration 19: Speed depending phase shift 167
Illustration 20: end of movement with AB-Command 201
Illustration 21: Initialisation with return to the reference signal 214
Illustration 22: Initialisation position and position bound 216
Illustration 23: Move with constant velocity 218
Illustration 24: Trapezoidal velocity profile 222
Illustration 25: Positions course with trapezoidal velocity profile 223
Illustration 26: Triangle velocity profile 223
Illustration 27: Higher and low acceleration value 227
Illustration 28: Set brake ramp 232
Illustration 29: positioning with creep speed 236
Illustration 30: Velocity steps SetVelocity, SetSlowSpeed 238
Illustration 31: Change travel velocity during a move 240
Illustration 32: End of movement with ST-Command 242
Illustration 33: Cooperation of the commands after detecting a reference signal. 247
Figure 34: Cooperation of the commands reference error correction 248
Illustration 35: Reference error correction with factor 260
Illustration 36: Limit values for the evaluation reference input 264

 4 Abbreviations and symbols

Page 6 User Manual PMCprimo SoftPLC

4 Abbreviations and symbols

Abbreviation Meaning/Description
PMCprimo Registered trade-mark Pilz GmbH & Co. KG

PMCtendo Registered trade-mark Pilz GmbH & Co. KG
Hiperface Registered trade-mark Max Stegmann GmbH

Symbols Meaning/Description

This symbol indicates the possibility of imminent danger to life and limb.
Failure to observe these warnings can lead to serious or life-threatening
injury.

This symbol indicates important instructions for the correct operation of the
drive. Failure to observe these instructions can lead to failures of the drive or
the connected system.

This symbol indicates application tips and information of an especially useful
nature. These will help achieve the optimal use of all the available functions.

5 Introduction

User Manual PMCprimo SoftPLC Page 7

5 Introduction

This manual describes the specialties and the functional library of the SoftPLC according to the
IEC-61131 standard. It can be used as a supplement to the separate CoDeSys user manual
which describes the general programming and operation.

Please carefully read this user manual. Reference manual for all commands is the german
version.

PMCprimo motion control systems are available in different types and can control more than 700
axes in a network. The coordination of the separate axes in PMCprimo is realized over the host
level. Every PMCprimo-device can be used as a host system.

PMCprimo is programmed in a high level language or IEC 61131-3 (CoDeSys). Central
communication medium is a terminal software (see user manual “Motion Control Tools”) on your
PC, that will be connected via a RS232 or Ethernet interface. All parameterisations and user
programs can be saved in flash memory or a Compact-Flash-Card.

Software functions for movement of servo axes

With the described PMCprimo-commands the parameters will be set and functions for the
respective task will be programmed.

The wide range of commands allows the realization of complex applications. PMCprimo has axis
spanned commands, this means that a separate command can affect several axes.

Reference commands allow the automatic initialisation and a reference error correction at a
running machine. The reference error can be compensated variable, for example with defined
ramp or time functions.

By this, divergences in product or machine parameters can be corrected flexible (cycle based).

Free definable master-slave-relationships allow the user to define any speed profiles for motors.
The usage of jerk less movement flow (for example modified sine) reduces the mechanical load at
the machine as much as possible.

PMCprimo can fit motors with electronic gear functions just by software. The relation between
motor positions can be defined freely by the user, additionally to the electronic gear function
(linear and non linear correlation with a tabular position assignment). There are multiple of VDI
defined movement kinds for your choice. Tabular position assignments can replace mechanical
cams and mechanical gearboxes.

When needed PMCprimo can generate new maps with the internal motion generator during
machine operation. Product dependent machine changeovers can be done by the push of a
button.

Beside several possibilities to synchronize machine axes, there are also many commands for
absolute, relative or endless positioning of power transmissions available.

All axes can operate in virtual mode (electronic master axis), for example for initial operation or as
help axes.

 5 Introduction

Page 8 User Manual PMCprimo SoftPLC

Hardware functions

PMCprimo is intended for use with digital incremental position encoders which provide two signals
in
quadrature. This allows the system to measure both the distance and direction of motion of the
motor, thus providing the closed-loop feedback information for the channel. The encoder input
interface circuit multiplies the resolution of the encoder by four, such that each complete cycle of
the encoder signals represents four counts. PMCprimo includes full isolation of the encoder input
signals, and are designed for use with encoders having differential line driver outputs. This is get
best performance and noise rejection in an industrial environment. You can also use SSI-,
Hiperface-, or CANopen-encoder instead of incremental position encoders.

PMCprimo has digital input and digital output lines (the number depends to the type of
PMCprimo), which may be used in various ways. Additional has PMCprimo analogue inputs and
outputs. All digital input lines gives with a change of their state an interrupt. The user defines what
happens with the interrupt. The state of the input line or the value of the analogue input could be
checked in sequences. The state of the outputs is also controlled by sequences. Outputs may be
explicitly set and cleared, and can be used to control external relays or valves, or just for status
indication.

The inputs and outputs can be used as an interface to a PLC The digital input and output lines are
fully isolated and are compatible with 24 V logic signals. For comfortable communication with a
PLC or any other host computer a RS232 interface, MODBUS, several field bus systems or
Ethernet are available.

The analogue outputs give signals, ranging from -10 V to + 10 V.

Applications:

Typical applications for PMCprimo motion control systems are:

• Packaging machinery

• Modular machines

• Printing and paper machineries

Handling systems

6 Manufacturer’s declaration / Safety Instructions

User Manual PMCprimo SoftPLC Page 9

6 Manufacturer’s declaration / Safety Instructions

6.1 Manufacturer’s declaration

Controls are not machines within the scope of the Machinery Directive 98/37/EG, but components
for installation into machines.
An initial start-up is prohibited until it has been noticed that the electrical equipment or machinery
in which the controls are incorporated correspond to the requirements of the EG-regulations.

6.2 Safety Instructions

Warning!
Do not touch live mains and components – potentially fatal.
During initial operation it has to be assured that there will be no danger to personnel and damage
to machinery or equipment.
For this reason the following safety precautions must be taken.
Only qualified and well-trained specialists should work on the units to avoid any injury to personnel
or damage to machinery.

Please note:

Warning!
As a general principle, electronic appliances are not failure-free.
The Installation and Operating Instructions must be read carefully and all safety regulations
observed before installation and initial operation as incorrect handling can cause injury to
personnel and damage to machinery.

• Only qualified and well-trained specialists who are familiar with the transportation,

installation, initial operation, maintenance and operation of the units, as well as with the
relevant standards, may carry out the corresponding works.

• Technical data and information (Type tag and documentation) must be observed.
• ESD-Danger!

Control units contain components which will be damaged by electrostatic discharge if
handled incorrectly.

 Therefore: - before touching the control unit:
 „Ensure that your own body is earthed”
 Always place the control unit on a conductive surface with good earth connection.
 Avoid touching contacts, components and plug connections.
• Never disconnect electrical connections when the drive is connected to mains power.
• Do not open the covers and switch enclosures when the drive is running.
• Before opening the units switch off mains power.

Wait at least 5 minutes before opening.
 As a precaution test the intermediate circuit.
 Open only when it is < 40 V.

 7 General description

Page 10 User Manual PMCprimo SoftPLC

7 General description

The option PMCprimo-SoftPLC is a supplement to the existing software functionality by a IEC-
61131 programmable software PLC (PLC = programmable logic control).

Release this software functionality is made by the PMCprimo command SK:

Series number: 000102
Installed Software keys:
Motion: 49a84d
Ethernet: 03fce7
SoftPLC: 178195

New Key?

A releasing has been carried out by an input of the code: 178195. This code is different for every
unit. The included CoDeSys licence label must be attached at the unit in case of a subsequent
activation.

Note: The PMCprimo commands are described in a separate programming user manual.

Additionally the programming tool CoDeSys (Controller Development System) is necessary which
is always required for a programming. This tool serves for a programming in the various IEC-
61131 languages (IL, LD, ST, FBD, etc.) and directly generates an assemble code at the
processor of the control unit. Without this program it is not possible to carry out modifications.
When installing the CoDeSys program additionally a so-called target information data is installed
which describes the characteristics of the PMCprimo-control.

Change since version 2.001:
The RAM memory is now allocated dynamically from the PLC. This means the PLC program is not
limited to 256 KB or 2MB. The PLC program can be as big as free memory is available.

8 News in PMCprimo firmware version 2.005

User Manual PMCprimo SoftPLC Page 11

8 News in PMCprimo firmware version 2.005

Function block PMCprimo
command

News/Change Page

SetAlignmentAcceleration
SetMapBaseAdvance
SetMonitorOutputGain
SetClutchWindow
SetReferenceErrorLimit
SetClutchLength
SetReferenceFalseHighLimit
SetReferenceFalseLowLimit
SetReferenceTrueHighLimit
SetReferenceTrueLowLimit
SetPositionOutputHysteresis
SetReferenceCorrectionVelocity
SetReferenceHoldOffTime
SetVelocityOutputHysteresis

AA
BA
KM
CI
LR
CL
FH
FL
ZH
ZL
PH
RV
RH
VH

New primo.lib:
Change of limits of some function blocks:
diAcceleration: DINT, to udiAcceleration: UDINT
uiPhase: UINT, to diPhase: DINT
iValue: UINT, to diValue: DINT
diValue: DINT, to uiValue: UINT
udiValue: UDINT, to uiValue: UINT
diValue: DINT, to udiValue:DINT
uiValue: UINT, to udiValue: UDINT
uiValue: UINT, to udiValue: UDINT
uiValue: UINT, to udiValue: UDINT
uiValue: UINT, to udiValue: UDINT
uiValue: UINT, to udiValue: UDINT
usiValue: USINT, to udiValue: UDINT
usiValue: USINT, to uiValue: UINT
uiValue: UINT, to udiValue: UDINT

30

109
119
39
115
262
111
264
266
266
266
170
260
269
172

SetMapPositionTimeout MT New range of values: 0 to 1000 131

SetMapOptionsWord MW Alignment acceleration also with speed mapping 127

SetMapOptionsWord MW New Spezial case bit 0 and bit 2 are set simultaneously 127

SetModbusAddress MU New function block 310

 Definition of new tasks

 Number of the global variables g_iModbusData
increased from 1024 to 2048

21

DisplayPositionOverflowCounter BC Display of the position overflow counter 56

DisplayPositionBound SB Display of the actual position bound 57

SetMapOptionsWord MW Now it is possible to interrupt speed mapping with stop
to position.

127

SetScaleMapping SM New range of values for uiCounter and uiDevider:
400.000

136

DefineTimerOutput TC Definition of a timer-/counter output 161

SetReferenceAdvanceFactor RN New range of values: ± 65.535 258

WaitForRelativePosition WR New range of value: ±2.000.000.000 305

 9 Installation of the software

Page 12 User Manual PMCprimo SoftPLC

9 Installation of the software
The included CD for the CoDeSys programming tool is self-installing. In case the Autoplay Option
is switched-off on the computer, you must manually start the installation under
CoDeSysV2.3/Setup.exe.
All required components as for example the target information data and the PMCprimo library are
copied.

Herewith all required components are available.

9.1 Usage of directories

Different subdirectories will be added in the installation directory. Here a short description:

Directory:

Doku PDF documents

Help Files for online help in different languages

 English

 French

 German

Library Additional libraries and function blocks

 PLCConf GSD and EDS - files for Profibus and CANopen

Projects Directory for the projects

Target Files for the different target descriptions for any manufacturer

 Primo The files necessary for PMCprimo

If additional GSD files should be added then they have to be copied in the directory
Library/PLCConf.

The installation program automatically installs all for PMCprimo necessary files. This can be done
also with the program InstallTarget manually.

10 First steps
Please start the program CoDeSys for programming the control. A new window opens. If the
program is started the first time or a new program should be started, please click in the menu data
file to new. Now a window is opened in which the target system must be set.

10 First steps

User Manual PMCprimo SoftPLC Page 13

Illustration 1: target system

Here „CoDeSys for Primo“ must be set and then the OK switching section must be clicked.
Normally no further settings required.

Afterwards this window appears, in which the first module „PLC_PRG“ (as a Program !) is defined.

Illustration 2: module PLC_PRG

The next, you should define the control configuration. It is made in the resources. In addition to
this click the right card tab below on the right and then click twice on the control configuration.

 11 Control configuration

Page 14 User Manual PMCprimo SoftPLC

11 Control configuration
The connected Hardware is defined in the control configuration.

First of all automatically the Host is registered after preparation of a new project. For this 4 global
variables HostInput1, HostInput2, HostOutput1 and HostOutput2 are defined.

The variables have different meanings dependent on the Hardware.

11.1 PMCprimo Drive:

Version < 2.004:

HostInput1 (Word) corresponds to 12 digital inputs, the remaining 4 Bits are not used.
HostInput2 (Word) presents 8 virtual inputs, the remaining 8 Bits are not used..
HostOutput1 (Word) is provided for 8 digital and 8 virtual outputs.
HostOutput2 (Word) is not used..

From version 2.004:

HostInput1 (Word) corresponds to 12 digital inputs, the remaining 4 Bits are not used.
HostInput2 (Word) presents 16 virtual inputs.
HostOutput1 (Word) is provided for 8 digital and the first 8 virtual outputs.
HostOutput2 (Word) is provided for 16 virtual outputs.

For compatibility the first 8 virtual outputs are accessible with HostOutput1 and HostOutput2. For
new projects the HostOutput2 shall be used for virtual outputs.

11.2 PMCprimo 2+2:

HostInput1 (Word) corresponds to 16 digital inputs.
HostInput2 (Word) presents 8 virtual inputs, the remaining 8 Bits are not used.
HostOutput1 (Word) is provided for 16 digital outputs.
HostOutput2 (Word) corresponds to 8 virtual outputs again, the remaining 8 Bits are not used
again.

11.3 PMCprimo 16+:

HostInput1 (Word) corresponds to 16 digital inputs.
HostInput2 (Word) presents 16 virtual inputs.
HostOutput1 (Word) is provided for 16 digital outputs.
HostOutput2 (Word) is provided for 16 virtual outputs

11.4 PMCprimo Drive2:

HostInput1 (Word) corresponds to 12 digital inputs, the remaining 4 Bits are not used.
HostInput2 (Word) presents 16 virtual inputs.
HostOutput1 (Word) is provided for 8 digital and the first 8 virtual outputs.
HostOutput2 (Word) is provided for 16 virtual outputs.

For compatibility the first 8 virtual outputs are accessible with HostOutput1 and HostOutput2. For
new projects the HostOutput2 shall be used for virtual outputs. It is the same usage as for
PMCprimo Drive and therefore projects are compatible with both hardware versions.

11 Control configuration

User Manual PMCprimo SoftPLC Page 15

Therefore always 2 words for the inputs and 2 words for the outputs are used with all systems.

The name HostInput and HostOutput can be changed at any time (double click on the name).

If additionally there are nodes in the network, those must be advised to the PLC. For this, new sub
elements must be added to the control configuration. First click „Module primo [Slot]“ in the list
with the left mouse button and then press the right mouse button. A context menu appears, to
which a sub element can be added.

The module PMCprimo indicates the configuration of the control, i.e. here it is set how many
nodes are available in the network.

„primo Node Input/Output“ adds the information for a further node.

The global variables are called NodeInput and NodeOutput. The holding is identical as with the
Host.

In case further nodes are added, you have to observe that the variables NodeInput und
NodeOutput are not named, as otherwise the same variable names refer to different memory
ranges and then an error message is indicated during compiling.

Illustration 3: Renamed inputs

 11 Control configuration

Page 16 User Manual PMCprimo SoftPLC

When the right mouse button is pressed via PLC configuration, another context menu appears, in
which further modules can be added.

Following modules are currently supported:

11.5 PMCprimo-CAN Input/Output:

Firmware-Version < 2.003

A sub-element is added for the communication with a CAN-I/O extension. Automatically global
variables are arranged for 64 inputs (8 Bytes) and 64 outputs. This is also the maximum number
of inputs and outputs. This storage range is also pre-defined, if there are not so many input or
output modules are available. In this case the corresponding Bytes are not occupied.

Firmware-Version ≥ 2.003:

After the sub-elemente PMCprimo-CAN is added then it is possible to add with the context menu
additional inputs and outputs to this element. With the menu PMCprimo CAN Input/Output 8
inputs and 8 outputs are added. The maximum number is 256 inputs and 256 outputs.

Only one bus coupler is supported with 256 inputs and outputs. If a second sub-element
PMCprimo-CAN is added then it is ignored.

11.6 Profibus-DP enhanced Master:

A sub-element for the Profibus-DP Master card is included. This card can be installed into the
PMCprimo 2+2 or 16+ as option and can be used for communication with further input/output
modules, HMI-units or further Profibus units. If you click with the right mouse button over the list
entry Profibus-DP enhanced Master a context menu with possible Profibus units appears. This
information is taken from the GSD-files.

In order to install new GSD-files copy the files to C:\Codesysforautomationalliance\library\plcconf
or into the installation list given by you. With the next start of the programming tools appears a
further entry in the context menu.

For the Profibus-DP Master you must set the speed of the Profibus (Standard 9.6 kBits/s) under
the Bus Parameters.

For the Profibus-DP Slave units the used inputs/outputs are to be set exactly in such a way as the
Hardware is configurated. If you use for example 64 inputs, 8 Bytes must be set as input Byte. If
the number does not coincide, the Profibus cannot be started and a communication cannot take
place.

Diagnosis Bytes of the Profibus-DP Masters

The Profibus-DP Master writes diagnosis data into the diagnosis range. This address can also be
determined in the control configuration for the Master. The first address (for example %MB8) is
determined. 4 Bytes are written by the Profibus-Master which have the following meaning:

Byte 0: Globale Bits (Example %MB8)

Bit Meaning

0 0: OK
1: Parameterisation failure

1 0: OK
1: unit went to Auto Clear Modus, as there is an
error on the removed unit

2 0: OK
1: At least one node does not exchange any data
or signals failure.

11 Control configuration

User Manual PMCprimo SoftPLC Page 17

Byte 1: Master- und Network status (example %MB9)

Value Meaning

0 Offline

64 = 16#40 Stop

128 = 16#80 Clear

192 = 16#C0 Operate

Byte 2: Failure of removed nodes (example %MB10)

Value Meaning

0 No failure

1 - 254 Address of the smallest node, which indicates a
failure. (detailed failure cause see Byte 3)

255 Internal failure in the Master (detailed failure cause
see Byte 3)

Byte 3: Failure cause with external failures (Byte 2 from 1 up to 254)
The node address of the defective unit is indicated in Byte 2..

Value Meaning Removal

0 No failure

3 Function in nodes is not available Check, if unit is compatible to the
Profibus-DP standard or if the correct
GSD was used.

9 No response data Check bus cable

17 No feedback of the slave node Check bus cable and bus address of
the slave node

18 The unit is not integrated in the
Tokenring

Check the highest station address of
the Profibus Master

 11 Control configuration

Page 18 User Manual PMCprimo SoftPLC

Byte 3: Failure cause with internal failure (Byte 2 is 255)

Value Meaning Removal

0 No failure

50-53 Internal failure Contact company Pilz

54 No master configuration Check the configuration

55 Defective parameter value for the master
configuration

Contact company Pilz

56 No configuration for the removed node Check the configuration

57 Defective parameter value for the removed
nodes

Contact company Pilz

58 Double removed node address Check the node addresses

202 No free segment Contact company Pilz

212 Failure when reading the configuration data Check the configuration

213 System error Contact company Pilz

Diagnostic Bytes of the Profibus-DP Slave

A Profibus-DP Slave also writes diagnostic data in the diagnostic address range. The address can
be determined but not set in the control configuration, as the required storage range is determined
from the GSD-file. The first 6 Bytes are standard and have the following meaning.

Byte 0

Bit 0: Slave does not respond (is internally located by the DP-Master)
Bit 1: Slave is in a high running position (parameter and configuration is
 evaluated
Bit 2: Configuration failure
Bit 3: Ext_Diag_Data are available (from Byte 6 on)
Bit 4: Function is not supported
Bit 5: False response from the Slave (is internally located by the DP-Master)
Bit 6: Parametric failure
Bit 7: Slave is in a data exchange with another Master (is internally located by the
 Profibus-DP Master)

Byte 1

Bit 0: Slave must be brought in a new parametric condition
Bit 1: Slave has static diagnosis
Bit 2: 1
Bit 3: DP-Watchdog is active
Bit 4: Slave is in a Freeze-Mode
Bit 5: Slave is in a Sync-Mode
Bit 6: Reserved
Bit 7: Slave is de-activated (is internally located by the DP-Master)

Byte 2

Bit 0-6: Reserved
Bit 7: Too many Ext_Diag_Data

Byte 3 Station address from the Master, carried out with the data exchange

Byte 4,5 Ident-Number

Is the Bit 3 located in the Byte 0, there are further diagnosis data available. These are stored from
the 6. Byte on and depend on the manufacturer. Therefore the meaning is to be determined in the
documentation of the manufacturer.

11 Control configuration

User Manual PMCprimo SoftPLC Page 19

11.7 Profibus-Slave

If the module Anybus-S PDP is added to the PLC configuration then the SoftPLC communicates
direct with the Profibus board inside of the PMCprimo 2+2 or PMCprimo 16+. For the settings
different additional inputs are required. The setting of the station address is ignored because this
is done with the switches on the board. With the inputs and outputs the number of inputs and
outputs have to be adjusted. This must exactly correspond to the configuration inside the Profibus
master. Important notice: the inputs are from the view of the master. This means outputs in
CoDeSys (%Q).

If the module is integrated in the PLC configuration then the Profibus board is used only by the
SoftPLC. The normal connection to PMCprimo with bus variables $B is not used any longer. The
settings in the configuration menu (CD command) are not used.

For the SoftPLC the Profibus board is an expansion of inputs and outputs.

11.8 Profibus-Slave IC

With the PMCprimo 16+ / Drive2 it is possible to mount a special Profibus-IC. With this module
maximum 32 bytes input and 32 bytes output data is possible. As with the Profibus-Slave this
board is used normally by PMCprimo with bus variables. For this in the configuration menu
different settings are used (size of data, offset and station address). It is also possible to enable a
direct communication. If the module Anybus-IC PDP is added to the PLC configuration then the
SoftPLC uses this Profibus-IC as an input- and output expansion. The station address has to be
set in the corresponding input mask because there is no hardware switch on board. The setting
for the inputs and outputs works like all other Profibus modules.

 12 Communication with the control

Page 20 User Manual PMCprimo SoftPLC

12 Communication with the control

12.1 Kind of connections

Two possibilities are available for the communication with the control depending on the used
Hardware.

PMCprimo Drive Only serial communication

PMCprimo 2+2 Ethernet and serial communication

PMCprimo 16+ Ethernet and serial communication

PMCprimo Drive2 With optional expansion board Ethernet otherwise only serial
communication

Ethernet:

An IP-address must be set in the control and the option Ethernet must be released via a
Softwarekey.

The option Ethernet is always released with PMCprimo 16+ and PMCprimo Drive2. No
Softwarekey is necessary.

This is done by means of a PMCprimo CD- and SK-Command.

0.1: SK <RETURN>
0.1: Series number: 000102
Installed Softwarekeys:
Motion: 49a84d
Ethernet: 03fce7
SoftPLC: 178195

New Key?

The control must be switched-OFF and ON after the option Ethernet has
been released.

0.1: cd <return>
0.1:
Actual configuration:
Operate Mode: STANDALONE
Actual IP address 192.168.0.6
Actual Netmask 255.255.255.0
Fieldbus Address 4
Fieldbus In/Out length 50 words
Fieldbus In/Out offset 0
RS-232 Software-Handshake Xon/Xoff
RS-422 point to point
CAN Cycle time 1 ms
CAN node address 0
CAN baudrate: 500 Kbit
Startup delay 0s
Display mode channel state

12 Communication with the control

User Manual PMCprimo SoftPLC Page 21

0: Exit menu
1: Change operating mode
2: Delete application data
3: Change CANbus configuration
4: Change Ethernet
5: Change in/out length for Fieldbus
6: Change offset for Fieldbus
8: CAN Cycle time
9: CAN node number
11: Change Fieldbus address
12: Change number of channels
13: Change time and date
14: Change RS-232 configuration
15: Change RS-422 configuration
16: Change startup delay
17: Change display mode
18: Change usage RS422 for PLC
Choice [Return; ESC exits menu]: 4
New IP address (192.168.0.6) ?
New Netmask (255.255.255.0) ?

The IP address can be changed without restart of the system. If the netmask is changed
then a restart is necessary.

Serial
The CoDeSys programming tool connects itself locally per TCP/IP with the program PTerm. This
program undertakes the data transfer to the control. Simultaneously also the other programmes
as PMotion, PScope etc. can take hold of the control via the serial interface.

Important: The program PTerm must always be started and there must be a serial connection
open to the control.

Since version 2.005:

Now it is possible to use the Pilz control panels of the PMI series directly in CoDeSys. Therefore
the PMCprimo configuration command CD 18 must set to 1 in order the RS422 interface ist set for
SoftPLC. The control panel can direcrtly access to variables of SoftPLC. It is defined an array of
1023 global variables and named with g_iModbusData. A modbus protocol is not necessary
therefore. The boud rate is set to 38400 (8 bits, 1 stopbit and no parity). Motorola byteorder must
be set.

If the RS422 interface is set for PLC also the programming must be done with this interface
because the connection with Pterm is deactivated (localhost in CoDeSys) if CD18 is set to 1.

It is also possible to access the global data g_iModbusData from CAN. With SDO the index
0x3001 to 0x3008 it is possible to access 128 elements with sub index 0 to 127 (integer 16, 2
bytes) of the array. Therefore all 1024 array elements are accessible with SDO.

Since version 2.006:

The number of global variables g_iModbusData was increased from 1024 to 2048. The index for
CAN is 3001 hex to 3010 hex and the subindex is 0 to 127.

 12 Communication with the control

Page 22 User Manual PMCprimo SoftPLC

12.2 Setting of a new connection

First of all a new entry is generated in the CoDeSys programming tools under the menu
Online-> communication parameter and a name to be selected freely is allocated for this
connection and then the corresponding list entry is modified.

The following parameter must be set:

Address: With Ethernet the address of the control, with serial interface localhost
or 127.0.0.1

Port: 1200 (Standard value)
Motorola Byteorder: Yes (Standard value No), double click changes the value
Blocksize: 128 (Standard value)

Afterwards the connection to the control can be checked with the menu Online->Log in. The
following window should appear then:

Illustration 4: Log-in in the control

The window only appears when the module PLC_PRG includes an executable network and the
project could successfully be compiled.

If this window is indicated it means that the communication could be built-up and the PLC-
program can be downloaded.

12 Communication with the control

User Manual PMCprimo SoftPLC Page 23

In case a failure message appears, it might be that the IP-address is not correctly configurated.

Remark: The following pictures are given from a german windows system!

First off all try the Command PING under the Start->Execute:

In this case a connection could be established, however, a IP-address may be used twice and a
acknowledge message has been signalled back from a different PC.

If the issue appears in such a way then the control is either not connected, or the IP-address or
the netmask are set incorrectly.

Check which IP-address and netmask the PC, on which the CoDeSys programming tools runs,
has. This can be made under Windows NT or 2000 with the command IPCONFIG (Windows
95,98 and ME with the command WINIPCFG):

In this case two network cards are installed in the PC. The PMCprimo is connected at the first
network card and can be set to a IP-address of 192.168.0.1 up to 192.168.255.255. The first two
digits may not be different, as the netmask 255.255.0.0 does not allow this.

Please contact your system administrator in case of further questions.

 13 SoftPLC in PMCprimo

Page 24 User Manual PMCprimo SoftPLC

13 SoftPLC in PMCprimo
The functionality of the SoftPLC is implemented in PMCprimo as independent task.
The used preemptive multitasking operating system always selects this task, if tasks with a higher
priority are not active. As the PLC must always be selected in a cyclic way and, therefore, this task
is never in an idle running condition, this one has the second lowest priority.
Only the task for the Motiongenerator (software option) has still a lower priority. As soon as the
Motiongenerator must generate a curve, the PLC-task is not started with each cycle for 2
milliseconds. This means, the minimum cycle time has 2ms plus the operating time. If the
Motiongenerator is not active, the PLC-task is restarted immediately. It depends on the size of the
PLC-program which cycle time is completely to be realised.

Example: With PMCprimo 16+ 5000 IL-instructions needs approx. 0,5 ms -> When
Motiongenerator active cycle time = 0,5 ms + 2 ms = 2,5 ms.
In case the Motiongenerator is not active, the cycle time amounts to 0,5 ms.

In case of this example the inputs are memorised and processed every 0,5 ms and then the
outputs are updated.

This time can be extended if tasks with a higher priority, as for example the servicing of the
program for PMCprimo-programs, require processor time. To be able to measure the cycle time
the global variable g_diCycleTime has been implemented. This variable reproduces the cycle time
without possible 2 ms pause, when the Motiongenerator is active.

13.1 Start of the system

During start of the system information as to the PLC-program are indicated.

The information of the project stored last is indicated which generate in CoDeSys with the function
Bootproject and secured in Flash.

Ser.No.:441, Version 1.007beta6 Feb 27 2002, 15:32:49
Operate Mode: STANDALONE
MOTION INSTALLED
SOFTPLC INSTALLED
*** Date of Project: 2002-03-13
*** Project: Sample.pro
*** Title: Sampleproject
*** Version: 1.0
*** Author: Max Mustermann
*** Description: Sampleproject for documentation
Channel 0.1 found
Channel 0.2 found
Channel 0.3 found
RESTORING DATA...
0.1:
0.2:
0.3:
0.1:
READY RESTORING DATA
0.1:

13 SoftPLC in PMCprimo

User Manual PMCprimo SoftPLC Page 25

13.2 Non transient storage

Completely there are 256KB of a non transient flash storage for programs available. This storage
is used for half of PMCprimo-programs and PLC-programs each. Therefore the PLC-program can
be 128KB big the maximum. As of Firmware version 1.008c with PMCprimo command “CD” the
available storage for PLC-programs can be set. For detailed information please refer to the
PMCprimo reference manual.

Example:
0.1: CD

0.1:

Actual configuration:

Operate Mode: STANDALONE

Actual IP address 10.10.180.100

Actual Netmask 255.255.0.0

Fieldbus In/Out length 50 words

Fieldbus In/Out offset 0

Channel 5 disabled

RS-232 Software-Handshake Xon/Xoff

CAN Cycle time 2 ms

CAN node address 0

Flashmemory for SoftPLC 128KB

Startup delay 0s

0: Exit menu

1: Change operating mode

2: Delete application data

3: Change CANbus configuration

4: Change Ethernet

5: Change in/out length for Fieldbus

6: Change offset for Fieldbus

7: Enable channel 5 (CAN-encoder)

8: CAN Cycle time

9: CAN node number

10: Flashmemory for SoftPLC

14: Change RS-232 configuration

16: Change startup delay

Choice [Return; ESC exits menu]: 10

Flashmemory for SoftPLC (0: 128KB, 1:192KB 2:256KB) 128KB ? 192

All data will be deleted ! Are you sure? Y/N: Y

Restore in Flash necessary!

Please exit menu with ESC to save parameters and then reboot system !

 13 SoftPLC in PMCprimo

Page 26 User Manual PMCprimo SoftPLC

13.3 Working storage

The available RAM-storage is dynamically distributed among all tasks. 16MB-storage are
sufficient for all thinkable programs.

13.4 Battery back-up storage

PMCprimo Drive:

No battery back-up available.

PMCprimo 2+2:

In case of the PMCprimo 2+2 7392 Bytes are available for the PLC as battery back-up storage. If
the version is less then 2.004 then 2048 bytes are available. This storage can take up variables
which are marked with the keyword RETAIN. The computer automatically files these variables into
this special storage range

PMCprimo 16+:

In case of the PMCprimo 2+2 124 KBytes are available for the PLC as battery back-up storage.
This storage can take up variables which are marked with the keyword RETAIN. The computer
automatically files these variables into this special storage range

PMCprimo Drive2:

If the optional expansion board is mounted then 7382 Bytes are available.

13.5 Integration of the SoftPLC in PMCprimo

The installed function library adds function blocks to the SoftPLC. Independent actions can be
started in PMCprimo with these function blocks. PMCprimo undertakes this action and
independently carries them out, without further function calls of PLC.

If for example a positioning shall be started the accelerations and speed can be set with one
module each and then the positioning can be started with the function block
MoveToAbsolutPosition. PMCprimo independently undertakes now the complete setting value
calculation and positioning control. It is not necessary for PLC to do anything else for the
positioning. Each function block has an output bDone with which the complete performance is re-
signalled. This means for example with MoveToAbsolutePosition that the target position was
achieved and the axis has braked again to the speed O.

13 SoftPLC in PMCprimo

User Manual PMCprimo SoftPLC Page 27

PMCprimo
position
control,

etc.

SoftPLC

1 2 30 time/ms

read inputs

set outputs

read inputs

set outputs

Illustration 5: time response SoftPLC

The PMCprimo-task is executed in every millisecond and undertakes the setting value calculation,
positioning control etc. In case the setting value calculation requires a longer working time, the
PLC-Task can be interrupted several times.

When starting the PLC-program the inputs are registered and then the actual PLC-program is
executed. At the end the outputs are updated and the cycle starts again.

PMCprimo

SoftPLC

1 2 30 time/ms

Motion-
generator

Illustration 6: time response SoftPLC with Motiongenerator

Is additionally the Motiongenerator active, the SoftPLC carries out its standard calculation cycle
and after the outputs have been updated, the SoftPLC stops for 2 milliseconds enabling the
processor to carry out the Task for the Motiongenerator. As soon as the curve has been
calculated, the Task for the Motiongenerator is finished and there is no pause.

 13 SoftPLC in PMCprimo

Page 28 User Manual PMCprimo SoftPLC

As of version 2.006 defintion of new tasks:

Now it is possible to add 4 tasks inside the SoftPLC with high priority. For this a new file
taskkonfig.xml is necessary.

In the task configuration the type triggered by an external event is available. The cycle time is set
with the input in the cyclic type. First the type has to be set to cyclic and the time typed in and then
the type has to be changed to triggered by an external event. Then the task TASK_T01 can be
chosen.

The four tasks are executed with a higher priority directly in the system. The normal PLC task is
therefore interrupted and it is possible to react faster on some inputs.

Important:

Because the fast tasks can interrupt the normal PLC_PRG task care must be taken with the
outputs.

13.6 PMCprimo-programs

A complete application with the SoftPLC is possible, however, the processing is completely
carried out in the Host, i.e. every moving command is started in the Host.

PMCprimo-programs are possible as up to now. These programs can be started by the PLC and
be processed in a parallel way. Here the distribution Host and nodes remains existing. Herewith a
faster processing with the change of an input is possible.

There are two possibilities in order to start PMCprimo programs from the PLC:

Access to the bus variables: These variables can be defined as trigger variables under PMCprimo
and then start a pre-selected program.

A program can directly be started via a function block. For that the program name must be
indicated in the PLC.

Example for a PMCprimo-program:

ES MOVE
CH1.1;SV100000;SA500000;DC500000;MA10000
NS

This program is locally processed on the node 1. The program can directly be started from an
input on this node (for example with the command DI1.1:2+,MOVE). In this case the movement is
carried out with a positive impulse of the input 2, without loading the PLC. It is processed within a
millisecond as the performance is carried out directly on the node.

The program can be carried out with the function block ExecuteSequence(´Move´) by the PLC.
However, the processing is more slowly. The time is determined by the communication speed and
size of the PLC-program.

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 29

14 Function library primo.lib
Notes for the function library primo.lib:

The PLC-Function blocks call the corresponding PMCprimo-commands.

Every function block has an input bExecute. The corresponding action is started with an rising
edge from 0 to 1 in PMCprimo. Is the input bExecute on 0, the function block is relocated.

Every function block has three output variables.

bDone: Signals True back, if the action is completed.
False, if the action is still under operation.

bError: If an error has occurred , TRUE is signalled back here.

iErrorNumber: Should bError be TRUE, then an error number is signalled back here which
specifies the error in details.

The PMCprimo function library is divided in several sub-files. This subdivision only serves for
clearness and does not have any effect on the integration in a PLC-program.

Illustration 7: PMCprimo Function library

 14 Function library primo.lib

Page 30 User Manual PMCprimo SoftPLC

The input and output variables are adapted to the Hungarian notation. As a result an easy
connection between variable names and value ranges is possible.

Präfix Meaning Value range

b bool True or False

di double int - 2147483648 up to 2147483647

i int -32768 up to 32767

pdi pointer double int Pointer to double int

s string

udi unsigned double int 0 up to 4294967295

ui unsigned int 0 up to 65535

usi unsigned short int 0 up to 255

14.1 Versions of Primo.lib

In the directory Target/Primo different libraries are stored. Depending to the firmware version a
corresponding version of library has to be used. If the wrong version is used then new function
can’t be used. To use the right version either rename or copy the file to primo.lib or use the library
manager in CoDeSys to replace library primo.lib by the right version.

Released versions:

Primo_V1_008.lib: For firmware version 1.008 and also for 1.009; first version

Primo_V1_010.lib: For firmware version 1.010; new function blocks

With this versions the maximum numbers of POU is 512.

The version 1.008 can also used with firmware version 1.010 if the new function blocks are not
needed. It is not possible to use the library 1.010 with the firmware version 1.008 or 1.009
because there will be error messages while downloading the project.

Primo_V2_000.lib For firmware version 2.000 up to 2.002; new function blocks and some
 changes

Primo_V2_003.lib For firmware version 2.003

Primo_V2_004.lib For firmware version 2.004

Use this version if the firmware version 2.004 is in PMCprimo. Don’t use another library.

From version 2.000 the maximum numbers of POUs is 4096. If there is an error message while
compiling the project then change in the target setting the maximum number of POUs.

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 31

14.2 Example of a program

In the following example there is a program which calls the function block
MoveToAbsolutePosition.

Illustration 8: Example of a function block

The program switches the axis 1 to the node in a position control as soon as the input 1 is
energised with 24V. Afterwards a time delay of 20 ms runs enabling the servo control to overtake
this information and to build up the torque. Afterwards the demand speed is set and an absolute
positioning is executed. When this movement is completed the output bDone of the function block
position 1 TRUE is resignalled.

 14 Function library primo.lib

Page 32 User Manual PMCprimo SoftPLC

14.3 Global variables

With version 2.004 additional global variables are available.

• g_iModbusData [0..1023] OF INT:

With the array it is possible to access directly 1024 variables with the Modbus protocol.
It is not necessary to call the function blocks SetBusVariable and GetBusVariable for this
variables. The variables can be accessed from address 1000 to 2034 at the Modbus side.

• g_PrimoData
It is possible to add the elements PMCprimo Global Variables in the PLC configuration
module PMCprimo. Here it is possible to access different data without using the
corresponding function blocks.
Then the global array g_PrimoData[1..20] can be used.

• STRUCT
 diDemandPosition: DINT;
 diActualPosition: DINT
 diFollowingError: DINT;
 diActualSpeed: DINT;
 iActualError: INT;
 iActualState: INT;
 diReserved:ARRAY [0..2] OF DINT;
END_STRUCT

Note: to keep the CAN bus load low only data from the host is available. Informations from the
node are not stored in this global structure. Therefore the function blocks (for example
DisplayActualPosition) has to be used.

Change as of version 2.006:

• Now the array g_iModbusData accepts 2048 (0…2047) values. The variables can be
accessed from address 1000 to 3047 at the Modbus side.

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 33

14.4 The subdivision

The function blocks are listed in table of contents to explain the affiliation.

Auxiliary:

Funtion modules for definition and setting of the analogue auxiliary output.

BusVariables:

Function blocks for writing and reading of the bus variables to PMCprimo

CAN:

Function blocks for writing and reading of SDO-data. As a result an access to the object list of a
CANopen unit in the network is possible. Furthermore a PMCtendo DD4 can be defined as
PMCprimo-axis.

Display:

Function blocks for a feedback of demand and actual positions and other values from the control.

Drive:

A function block for communication with the cascade PMCtendo DD4 with PMCprimo Drive.

Encoder:

Function blocks for setting the measuring system. Here the kind (incremental SSI or similar) and
the resolution can be set.

Mapping:

Function blocks for the Master-/ Slave – relations with the appropriate parameters.

Output:

Function blocks for definition of outputs which are directly operated in a 1 ms cycle by PMCprimo.
These are for example cams, error outputs, reference outputs etc.

Positioncontrol:

Function blocks for setting of the position control. Here the basic pre-settings are possible, as for
example contouring error limits or position control parameters.

Positioning:

Function blocks for easy moving commands. Here speeds, accelerations and targets are given.

Referencing:

Function blocks for the cyclic reference correction. The reference error correction is also executed
in the background without using PLC. This kind of operation is activated and parameterised by
calls.

Tension:

Function blocks for setting of the web tension control. There the web tension control can be
activated. Furthermore the control parameter can be changed for it.

Wait:

Function blocks for special wait functions. PMCprimo waits for example for a defined position
before bDone goes TRUE. Therefore the critical time polling from the PLC is avoided.

 14 Function library primo.lib

Page 34 User Manual PMCprimo SoftPLC

14.5 Auxiliary

The analogue outputs (+/-10V) can be defined as auxiliary outputs with the function blocks
DefineAuxiliaryOutput, SetMonitorOutputFunction, SetMonitorOutputGain and
SetMonitorOutputOffset. These auxiliary outputs can be used in order to connect an oscilloscope
or multimeter for example and to indicate various values from the control.

However, a frequency converter can also be connected and the speed can be controlled with the
function SetMonitorOutputOffset without position control. As a result a slowly control could be
realised, i.e. dependent on an analogue input for example the frequency converter can be
controlled faster or more slowly.

The following graphics shows the connections of the various functions.

SetMonitorOutputGain

SetMonitorOutputOffset

D/A-converter

10V
256 x 2048

Voltage+

0

1

2

3

…

SetMonitorOutputFunction

Illustration 9: Analogue auxiliary output

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 35

DefineAuxiliaryOutput
PMCprimo-command: AO (Set auxiliary output channel)

Function list: Auxiliary

Description:
This command allocates the monitor signal for the current channel to one of the analogue outputs
on the same board. The monitor function SF may be defined for the current channel at any time.
The AO command is not available on different nodes. The auxiliary output channel may be set for
a particular analogue output only when its channel is in the motor off or virtual motor modes. If the
channel is in any other state then the analogue output is not available for use as a monitor output.
Conversely, if the analogue output has been allocated to a channel as a monitor signal, then this
channel cannot be taken out of motor off or virtual mode.

To return analogue output channel to normal operation, use AO0 on the channel where the
auxiliary output is defined. Note that it is also possible to have the auxiliary output signal allocated
to the current channel when it is in virtual mode; the signal does not have to be defined on a
different channel’s output. This may be useful in open-loop control applications.

In PMCprimo Drive the command AO4 enables a limitation of the torque. PMCtendo Version 3.55
is required and the parameter DILIM must be set to 1 (after this change it must done SAVE and
COLDSTART). The value 3280 is equal to the IPEAK value.

Input variables:

bExecute (BOOL) In case of a change from 0 to 1 the function is activated
 0 sets the function block back and the output variables are set to
 False or 0
usiNode (USINT) The node number in the linked system, if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
usiOutput (USINT) The output number from 1 to 8, 0 cancels the definition.

Output variables:

bDone (BOOL) The function has been executed (True) or is under operation (False)
bError (BOOL) True: an error has occurred, False: no error
iErrorNumber (INT) Indicates the exact reason of error (see GetError page 203)

Connected functions:

SetMonitorOutputFunction, SetMonitorOutputGain and SetMonitorOutputOffset

Factory setting: No output defined

 14 Function library primo.lib

Page 36 User Manual PMCprimo SoftPLC

Examples:

Declaration:

INST: DefineAuxiliaryOutput;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

 Example in IL:

CAL Inst(bExecute:=bVarBOOL1, usiNode:=0, usiChannel:=1, usiOutput:=1)
LD Inst.bDone
ST bVarBOOL2

Example in ST:

Inst((bExecute:=bVarBOOL1, usiNode:=0, usiChannel:=1, usiOutput:=1);
bVarBool2:= Inst.bDone

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 37

SetMonitorOutputFunction
PMCprimo-command: SF (Set monitor output function)

Function list: Auxiliary

Description:

The output function analogue auxiliary output can be set with this function block. It facilitates for
example the setting of the control parameter of the corresponding axis. For the output of the
analogue values an analogue output momentary not used is taken with the DefineAuxiliaryOutput
(page 35).

Arguments:

bExecute (BOOL) Setting is executed with a change from 0 to 1.
 0 sets the function block back and the output variables are set to False
 or 0.
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
usiValue (USINT) The number of the function

Value Function

0 no function
1 demand speed
2 actual speed
3 contouring error
4 speed error
5 absolute demand position
6 absolute actual position
7 average actual speed
8 speed master axis
9 average speed master axis
10 demand value web/torque control
11 reference error
12 encoder moment receiver
13 demand speed including reference error correction
14 Velocity ratio of master/slave. Therefore the average velocities (VT page 65 and BT page
 121) are used. The ratio is calculated as follow:
 Output = DV * KM / (DV master) + OM

Output variables:

bDone (BOOL) The function was carried out (True) or is still under operation (False)
bError (BOOL) True: an error has occurred; False: No error
iErrorNumber (INT) Indicates the exact error reason (see GetError page 203)

Connected functions:

DefineAuxiliaryOutput, SetMonitorOutputGain and SetMonitorOutputOffset

Factory setting: 0 (no function)

 14 Function library primo.lib

Page 38 User Manual PMCprimo SoftPLC

Examples:

Declaration:

INST: SetMonitorOutputFunction;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

 Example in IL:

CAL Inst(bExecute:=bVarBOOL1, usiNode:=0, usiChannel:=1, usiValue:=1)
LD Inst.bDone
ST bVarBOOL2

Example in ST:

Inst((bExecute:=bVarBOOL1, usiNode:=0, usiChannel:=1, usiValue:=1);
bVarBool2:= Inst.bDone

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 39

SetMonitorOutputGain
PMCprimo-command: KM (Set monitor output gain)

Function library: Auxiliary

Description:

The analogue auxiliary output is not influenced by the factors of the control algorithm. The
analogue auxiliary output depends not on the pre-setting of the control parameter
(SetControlWord page 182). The value to be given at the analogue auxiliary output is multiplied
with the set value before its output. The output signal can be inverted by changing the preceding
sign.

Input variables:

bExecute (BOOL) The setting is executed with a change from 0 to 1
 0 sets the function block back and the output variables are set to
 False or 0.
usiNode (USINT) The node number in the linked system , 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
iValue (INT) The amplification factor.
As of Primo_V2_006.lib: diValue (DINT)

Output variables:

bDone (BOOL) The function was executed (True) or is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

DefineAuxiliaryOutput, SetMonitorOutputFunction and SetMonitorOutputOffset

Factory setting: 1

Example:

Declaration:

INST: SetMonitorOutputGain;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

 Example in IL:

CAL Inst(bExecute:=bVarBOOL1, usiNode:=0, usiChannel:=1, iValue:=100)
LD Inst.bDone
ST bVarBOOL2

Example in ST:

Inst(bExecute:=bVarBOOL1, usiNode:=0, usiChannel:=1, iValue:=100);
bVarBool2:= Inst.bDone

Example in FBD:

 14 Function library primo.lib

Page 40 User Manual PMCprimo SoftPLC

SetMonitorOutputOffset
PMCprimo-command: OM (Set monitor output offset)

Function : Auxiliary

Description:

The analogue auxiliary output can be provided with a firm voltage level (Offset) with this function
block.

Offset in mV = 4,88 mV * SetMonitor OutputOffset

Input variables:

bExecute (BOOL) In case of a change from 0 to 1 the setting is executed
 0 places the function block back and the output variables are set to
 False or 0.
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
iValue (INT) The voltage level (Offset).

Output variables::

bDone (BOOL) The function was executed (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

DefineAuxiliaryOutput, SetMonitorOutputFunction and SetMonitorOutputGain

Factory setting:: 0

Example:

Declaration:

INST: SetMonitorOutputOffset;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

 Example in IL:

CAL Inst(bExecute:=bVarBOOL1, usiNode:=0, usiChannel:=1, iValue:=100)
LD Inst.bDone
ST bVarBOOL2

Example in ST:

Inst(bExecute:=bVarBOOL1, usiNode:=0, usiChannel:=1, iValue:=100);
bVarBool2:= Inst.bDone

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 41

14.6 BusVariables

The BusVariables serve as interface to external units as for example, control units. The variables
are set via Modbus, CAN, Profibus-DP Slave and Ethernet-interface. The various Bussystems
take all hold of the same variables. If several Bussystems are used simultaneously, the last
transmission decides which value the variable finally has.

GetBusVariable
PMCprimo-command: $B1 .. $B108

Function library: BusVariables

Description:

With this function block the actual value of a BusVariable can be read in the PLC.

Input variables:

bExecute (BOOL) The variable is set in case of a change from 0 to 1
 0 places the function block back and the output variables are set to
 False or 0 except diValue
iNummer (INT) The number of the variable from 1 to 108.

Output variables::

bDone (BOOL) The value was read (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)
diValue (DINT) The actual value of the BusVariable.

Connected functions:

SetBusVariable

 14 Function library primo.lib

Page 42 User Manual PMCprimo SoftPLC

Examples:

Declaration:

INST: GetBusVariable;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;
diValue: DINT;

 Example in IL:

 CALINST(bExecute := bVarBOOL1, iNumber := 2)
 LD INST.bDone
 ST bVarBOOL2
 EQ TRUE
 NOT
 JMPC else1_0
 LD INST.diValue
 ST diValue
else1_0:

Example in ST:

Inst(bExecute:= bVarBOOL1, iNumber:=2);
bVarBool2:=Inst.bDone;
IF bVarBool2 = TRUE THEN
 diValue:=Inst.diValue;
END_IF

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 43

SetBusVariable

PMCprimo-command: $B1 .. $B108 = value

Function library: BusVariables

Description:

The PLC can transmit a value to the BusVariable with this function block.

This BusVariable can be defined as TriggerVariable and is, therefore, able to call a PMCprimo-
program.

Input variables:

bExecute (BOOL) The setting is executed with a change from 0 to 1.
 0 places the function block back and the output variables are
 set to False or 0.
iNumber (INT) The number of the variable from 1 to 108
 The variables 101 to 108 are linked to virtual inputs in PMCprimo
diValue (DINT) The new value of the variable

Output variables:

bDone (BOOL) The function was executed (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Arguments:

Connected functions:

GetBusVariable

Examples:

Declaration:

INST: SetBusVariable;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, iNumber := 2, diValue:=1000)
LD INST.bDone
ST bVarBOOL2

Example in ST:

Inst(bExecute:= bVarBOOL1, iNumber:=2, diValue:=1000);
bVarBool2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 44 User Manual PMCprimo SoftPLC

14.7 CAN-Net and CAN-open

As of version 2.000 multiple CAN networks per device are supported by PMCprimo.

The CAN net, in which all PMCprimo devices are connected with each other is called “CAN-Net”.

The CAN net which connects a PMCprimo device with some servo drives (PMCtendo DD4) is
called “CAN-Open”.

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 45

CANPositionControlDrive and CANNetworkPositionControlDrive

PMCprimo-command: PD (positioncontrol to drive)

Function library: CAN

Description:

With this function block one or two PMCtendo DD4 with speed demand values can be controlled
via the CANbus in the VM0-Modus on the axis 2 and 3 (PMCprimo Drive) or four PMCtendo DD4
(PMCprimo 2+2).

The position is read from the encoder input or also via the CANbus. It can be set with the function
SetFeedbackEncoder (page 76).

The transmission of the speed demand value is made in a 4 ms step. If the actual position is also
transmitted via the CAN, the actual position is transmitted within this time. An interpolation is
made in the system in 1ms steps. These intermediate values are used for possible slave axes.

A PMCprimo Drive can still control 2 further axes and, therefore, a 3 axis system arises. The
position control parameters are set as with the internal axis and all movement functions are also
possible.

The only difference to an internal axis is the reference function. The reference functionality
requires an utmost possible exact value. If the actual position is transmitted via CAN, an exact
position measuring is not possible. If the reference functionality is required with an axis via CAN,
either an additional encoder line (from the encoder simulation of the servo control to the free
encoder input) must be arranged or the determined reference position has a temporary
inaccuracy. As only one additional encoder input is available, of course, only one axis can be
used for this exact position determination.

The definition is cancelled with the value 0 and the connection is disconnected via CAN.

Enhancement as of version 2.000:

The function block CANNetworkPositionControlDrive was implemented addionally, to access the
second can controller of a PMCprimo 16+ or a can expansion card. For that, another input
variable parameter usiCanNetwork was defined, which differs between the CAN-net and CAN-
open.

Enhancement as of version 2.000:

On the PMCprimo 16+ the command can be used on a maximum of 16 axes. The cycle time for
the CAN bus transmission is depending on the number of PMCtendo DD4 in the CAN net.

 14 Function library primo.lib

Page 46 User Manual PMCprimo SoftPLC

With value 0 the definition is cancelled and the connection via CAN is disconnected.

 Usabe axis numbers Number per CAN

PMCprimo Drive 2+3 2 just CAN

PMCprimo Drive2 2-10 (4*1) 8*2 per CAN-Netz

PMCprimo 2+2 1-4 4

PMCprimo 16+ 1-16 (4*1) 8*2 per CAN-Netz

(*1 till version 2.004) (*2 as of version 2.005)

Cycle time:

In the main network, mode standalone, the cycle time can be adjusted with the „CD“ command. In
mode “Host+Node” the cycle time is always 4 ms. In an extended CAN network the cycle time is
always choosen automatically, according to the following table:

CANPositionControlDrive (PD) 500 KBit 1 MBit

1-2 1 ms 1 ms

3-4 2 ms 1 ms

5-8 4 ms 2 ms

Input variables:

bExecute (BOOL) The setting is executed with a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
usiCanNode (USINT) The CAN node address of the PMCtendo DD4, 0 stops the
 connection

Output variables:

bDone (BOOL) The function was executed (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

SetFeedbackEncoder

Factory setting: 0 (no connection)

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 47

With version 2.003 a new function block CANNetworkPositionControlDrive is available. This block
has an additional input for choosing the CAN network with PMCprimo 2+2, 16+ and
PMCprimo Drive2.

Additional input variable:

usiCanNetwork 0: CAN main network.
 1: CAN at expansion board or second CAN controller

Example:

Declaration:

INST: CANPositionControlDrive;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChanel:= 1, usiCanNode :=4)
LD INST.bDone
ST bVarBOOL2

Example in ST:

Inst(bExecute := bVarBOOL1, usiNode := 0, usiChanel:= 1, usiCanNode :=4);
bVarBool2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 48 User Manual PMCprimo SoftPLC

GetCanSDO
PMCprimo-command: QR (Read SDO)

Function library: CAN

Description:

With this function block PMCprimo can take hold of the object list of a CAN unit per SDO and is,
therefore, able to read actual values or configurate the unit, for example. The configuration of the
parameter must be taken from the user manual of the corresponding network participant. The
read value can be allocated to a variable.

Input variables:

bExecute (BOOL) The reading function is started with a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0 except diValue
usiCanNetwork As of version 2.000:
 0: CAN main network.
 1: CAN at expansion board or second CAN controller
usiCanNode (USINT) The CAN node address CANopen unit
uiIndex (UINT) The index of the object library
usiSubIndex (USINT) The sub index for the access of the object library
usiBytes (USINT) The number of the Bytes (1 to 4).

Note: The number of the Bytes must coincide with object library of the CAN unit.

Output variables:

bDone (BOOL) The value has been read (True) or is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)
diValue (DINT) The read value

Connected functions:

SetCanSDO

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 49

Examples:

Declaration:

INST: GetCanSDO;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiCanNode := 4, uiIndex := 16#2000, usiSubindex := 0,
usiBytes := 4)
LD INST.bDone
ST bVarBOOL2
ST diValue

Example in ST:

INST(bExecute:= bVarBOOL1, usiCanNode:= 4, uiIndex:= 16#2000, usiSubindex:= 0, usiBytes:=
4);
bVarBool2:=Inst.bDone;
diValue:=Inst.diValue;

Example in FBD:

 14 Function library primo.lib

Page 50 User Manual PMCprimo SoftPLC

SetCanSDO
PMCprimo-command: QS (Send SDO)

Function library: CAN

Description:

PMCprimo can have access to object library of a CAN-unit per SDO and write for example
demand values or configurate the unit. The configuration of the parameter must be taken from the
user manual of the corresponding network station.

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables are
 set from False to 0
usiCanNetwork As of version 2.000:
 0: CAN main network.
 1: CAN at expansion board or second CAN controller
usiCanNode (USINT) The CAN node address CANopen unit
uiIndex (UINT) The index of the object library
usiSubIndex (USINT) The sub-index for the access to the object library
usiBytes (USINT) The number of the Bytes (1 to 4).
diValue (DINT) The value to be written.

Note: The number of the Bytes must coincide with the object library of the CAN-unit.

Output variables:

bDone (BOOL) Value was written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

GetCanSDO

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 51

Examples:

Declaration:

INST: SetCanSDO;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiCanNode := 4, uiIndex := 8192, usiSubindex := 0,
usiBytes := 4, diValue := 5)
LD INST.bDone
ST bVarBOOL2
ST diValue

Example in ST:

Inst(bExecute:= bVarBOOL1, usiCanNode:= 4, uiIndex:= 16#2000, usiSubindex:= 0, usiBytes:= 4,
diValue:=5);
bVarBool2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 52 User Manual PMCprimo SoftPLC

14.8 Display

Various values from the control can be read into the SoftPLC with the display function and further
processed there.

DisplayActualPosition
PMCprimo-command: DP (Display actual position)

Function library: Display

Description:

The actual position of the selected axis is read in a variable with this function block. The unit of the
actual position is increment.

Input variables:

bExecute (BOOL) The value is read in case of a change from 0 to 1
 0 resets the function block and the output variables are set to
 False or 0 except diValue
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)

Output variables:

bDone (BOOL) Value has been read (True) or is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact the error cause (see GetError page203))
diValue (DINT) The actual position

Also refer to:

DisplayDemandPosition und DisplayFollowingError

Examples:

Declaration:

INST: DisplayActualPosition;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Examplel in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1)
LD INST.bDone
ST bVarBOOL2
LD INST.diValue
ST diValue

Example in ST:

INST(bExecute:= bVarBOOL1, usiNode:= 0, usiChannel:= 1);
bVarBool2:=Inst.bDone;
diValue:=Inst.diValue;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 53

DisplayAnalogueInput
PMCprimo-command: DA (Display analogue input)

Function library: Display

Description:

The current value of the analogue input is indicated with this function block. The value range is
±2047. This corresponds to +/- 10V.

Input variables:

bExecute (BOOL) The value is read in case of a change from 0 to 1
 0 resets the function block and the output variables are set
 to False or 0 except diValue
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)

Output variables:

bDone (BOOL) Value has been read (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203))
diValue (DINT) The actual value of the analogue input.

Examples:

Declaration:

INST: DisplayAnalogueInput;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1)
LD INST.bDone
ST bVarBOOL2
LD INST.diValue
ST diValue

Example in ST:

INST(bExecute:= bVarBOOL1, usiNode:= 0, usiChannel:= 1);
bVarBool2:=Inst.bDone;
diValue:=Inst.diValue;

Example in FBD:

 14 Function library primo.lib

Page 54 User Manual PMCprimo SoftPLC

DisplayDemandPosition
PMCprimo-command: DD (Display demand position)

Function library: Display

Description:

The actual demand position of the selected axis is read into a variable with this function block.
The unit of the demand position is increments.

Input variables:

bExecute (BOOL) The value is read in case of a change from 0 to 1
 0 resets the function block and the output variables are set to
 False or 0 except diValue
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)

Output variables:

bDone (BOOL) Value has been read (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203))
diValue (DINT) The actual demand position.

Also refer to:

DisplayActualPosition und DisplayFollowingError

Example:

Declaration:

INST: DisplayDemandPosition;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1)
LD INST.bDone
ST bVarBOOL2
LD INST.diValue
ST diValue

Example in ST:

INST(bExecute:= bVarBOOL1, usiNode:= 0, usiChannel:= 1);
bVarBool2:=Inst.bDone;
diValue:=Inst.diValue;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 55

DisplayFollowingError
PMCprimo-command: FE (Display following error)

Function library: Display

Description:

The actual following error of the selected axis is read in a variable with this function block. The
following error is the difference between demand position and actual position. The unit is
increments.

Input variables:

bExecute (BOOL) The value is read in case of a change from 0 to 1
 0 resets the function block and the output variables are set to
 False or 0 except diValue
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)

Output variables:

bDone (BOOL) Value has been read (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)
diValue (DINT) The actual following error.

Also refer to:

DisplayActualPosition und DisplayDemandPosition

Examples:

Declaration:

INST: DisplayFollowingError;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1)
LD INST.bDone
ST bVarBOOL2
LD INST.diValue
ST diValue

Example in ST:

INST(bExecute:= bVarBOOL1, usiNode:= 0, usiChannel:= 1);
bVarBool2:=Inst.bDone;
diValue:=Inst.diValue;

Example in FBD:

 14 Function library primo.lib

Page 56 User Manual PMCprimo SoftPLC

DisplayPositionOverflowCounter

PMCprimo-command: BC (Set position overflow counter)

Function library: Display

Description:

The actual position overflow counter of the selected axis is read in a variable with this function
block. The unit of the actual position is increment.

Input variables:

bExecute (BOOL) The value is read in case of a change from 0 to 1
 0 resets the function block and the output variables are set to
 False or 0 except diValue
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)

Output variables:

bDone (BOOL) Value has been read (True) or is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact the error cause (see GetError page203))
diValue (DINT) The actual value of position overflow counter

Also refer to:

DisplayDemandPosition und DisplayFollowingError

Examples:

Declaration:

INST: DisplayActualPosition;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Examplel in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1)
LD INST.bDone
ST bVarBOOL2
LD INST.diValue
ST diValue

Example in ST:

INST(bExecute:= bVarBOOL1, usiNode:= 0, usiChannel:= 1);
bVarBool2:=Inst.bDone;
diValue:=Inst.diValue;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 57

DisplayPositionBound
PMCprimo-command: SB (Set position bound)

Function library: Display

Description:

The actual position bound of the selected axis is read in a variable with this function block. The
unit of the actual position is increment.

Input variables:

bExecute (BOOL) The value is read in case of a change from 0 to 1
 0 resets the function block and the output variables are set to
 False or 0 except diValue
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)

Output variables:

bDone (BOOL) Value has been read (True) or is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact the error cause (see GetError page203))
diValue (DINT) The actual position bound

Also refer to:

DisplayDemandPosition und DisplayFollowingError

Examples:

Declaration:

INST: DisplayActualPosition;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Examplel in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1)
LD INST.bDone
ST bVarBOOL2
LD INST.diValue
ST diValue

Example in ST:

INST(bExecute:= bVarBOOL1, usiNode:= 0, usiChannel:= 1);
bVarBool2:=Inst.bDone;
diValue:=Inst.diValue;

Example in FBD:

 14 Function library primo.lib

Page 58 User Manual PMCprimo SoftPLC

DisplayReferenceError
PMCprimo-command: DF (Display reference error)

Function library: Display

Description:

The last reference error of the selected axis is read in a variable with this function block.The unit is
increments.

Input variables:

bExecute (BOOL) The value is read in case of a change from 0 to 1
 0 resets the function block and the output variables are set
 to False or 0 except diValue
usiNode (USINT) The node number in the linked system, only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)

Output variables:

bDone (BOOL) The value has been read (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)
diValue (DINT) The last reference error.

Also refer to:

DisplayActualPosition and DisplayDemandPosition

Examples:

Declaration:

INST: DisplayReferenceError;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1)
LD INST.bDone
ST bVarBOOL2
LD INST.diValue
ST diValue

Example in ST:

INST(bExecute:= bVarBOOL1, usiNode:= 0, usiChannel:= 1);
bVarBool2:=Inst.bDone;
diValue:=Inst.diValue;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 59

DisplayReferenceLengthFalse
PMCprimo-command: ZX (Display length reference signal false)

Function library: Display

Description:

The length measured before is read-out with this function block, over which the reference signal
had the condition False. This indication is only made when Bit 0 of SetReferenceFilterOptionWord
(page 267) is set to 1. In case Bit 0 of the SetReferenceFilterOptionWord is set to 0, then
automatically ZX is also set to zero.

Note:

To be able to measure the length of the reference signal, the edge to be recognised is always
changed internally. The time for the reprogramming is the debouncing time (Function
SetReferenceHoldoffTime page 269). Signals which are shorter than the debouncing time or 1
millisecond cannot be measured and result a wrong value.

Input variables:

bExecute (BOOL) The value is read in case of a change from 0 to 1
 0 resets the function block and the output variables are set
 to False or 0 except diValue
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)

Output variables:

bDone (BOOL) Value has been read (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)
diValue (DINT) The length of the reference signal.

Also refer to:

DisplayReferenceLengthTrue

 14 Function library primo.lib

Page 60 User Manual PMCprimo SoftPLC

Examples:

Declaration:

INST: DisplayReferenceLengthFalse;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1)
LD INST.bDone
ST bVarBOOL2
LD INST.diValue
ST diValue

Example in ST:

INST(bExecute:= bVarBOOL1, usiNode:= 0, usiChannel:= 1);
bVarBool2:=Inst.bDone;
diValue:=Inst.diValue;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 61

DisplayReferenceLengthTrue
PMCprimo-command: ZY (Display length reference signal true)

Function library: Display

Description:

The length measured before is read with this function block, over which the reference signal had
the condition TRUE. This indication is only made when Bit 0 of SetReferenceFilterOptionWord
(page 267) is set to 1. In case Bit 0 of the SetReferenceFilterOptionWord is set to 0, then
automatically ZX is also set to zero.

Note:

To be able to measure the length of the reference signal, the edge to be recognised is always
changed internally. The time for the reprogramming is the debouncing time (Function
SetReferenceHoldoffTime page 269). Signals which are shorter than the debouncing time or 1
millisecond cannot be measured and give a wrong value.

Input variables:

bExecute (BOOL) The value is read in case of a change from 0 to 1
 0 resets the function block and the output variables are set
 to False or 0 except diValue
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)

Output variables:

bDone (BOOL) Value has been read (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)
diValue (DINT) The length of the reference signal.

Also refer to:

DisplayReferenceLengthFalse

 14 Function library primo.lib

Page 62 User Manual PMCprimo SoftPLC

Examples:

Declaration:

INST: DisplayReferenceLengthTrue;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1)
LD INST.bDone
ST bVarBOOL2
LD INST.diValue
ST diValue

Example in ST:

INST(bExecute:= bVarBOOL1, usiNode:= 0, usiChannel:= 1);
bVarBool2:=Inst.bDone;
diValue:=Inst.diValue;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 63

DisplaySnapshotPosition
PMCprimo-command: DS (Display snapshot position data)

Function library: Display

Description:

With this function block the last recorded SnapshotPosition before of the selected axis is given in
increments (see DefinePositionSnapshot 249).

Input variables:

bExecute (BOOL) The value is read in case of a change from 0 to 1
 0 resets the function block and the output variables are set
 to False or 0 except diValue
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)

Output variables:

bDone (BOOL) Value has been read (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)
diValue (DINT) The stored PositionSnapshot.

Also refer to:

DefinePositionSnapshot

Examples:

Declaration:

INST: DisplaySnapshotPosition;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1)
LD INST.bDone
ST bVarBOOL2
LD INST.diValue
ST diValue

Example in ST:

INST(bExecute:= bVarBOOL1, usiNode:= 0, usiChannel:= 1);
bVarBool2:=Inst.bDone;
diValue:=Inst.diValue;

Example in FBD:

 14 Function library primo.lib

Page 64 User Manual PMCprimo SoftPLC

DisplayVelocity
PMCprimo-command: DV (Display velocity)

Function library: Display

Description:

With this function block the actual speed of the selected axis is written to diValue. The unit of the
speed is made in increments/second. When using the function block SetVelocityAveragingTime
an averaged speed is determined via the set time.

Input variables:

bExecute (BOOL) The value is read in case of a change from 0 to 1
 0 resets the function block and the output variables are set to False or 0
 except diValue
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)

Output variables:

bDone (BOOL) Value has been read (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)
diValue (DINT) The actual speed

Also refer to:

SetVelocityAveragingTime

Examples

Declaration:

INST: DisplayVelocity;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1)
LD INST.bDone
ST bVarBOOL2
LD INST.diValue
ST diValue

Example in ST:

INST(bExecute:= bVarBOOL1, usiNode:= 0, usiChannel:= 1);
bVarBool2:=Inst.bDone;
diValue:=Inst.diValue;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 65

SetVelocityAveragingTime
PMCprimo-command: VT (Set velocity averaging time constant)

Function library: Display

Description:

This function block is effective when using the function block DisplayVelocity and
DefinePositionTriggerOutput. The set value specifies a period, over which PMCprimo determines
the averaged speed of the selected axis. This averaged speed uses PMCprimo instead of the
actual speed for the calculation of the phase displacement with electronic cams. For n=1
PMCprimo does not determine the average speed.

The determined average speed can be indicated with the function block DisplayVelocity, or
displayed at the analogue output.

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables are set
 to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
usiValue (USINT) The set period from 1 to 255 ms

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Also refer to:

DisplayVelocity and DefinePositionTriggerOutput

Factory setting: 1 millisecond

Examples:

Declaration:

INST: SetVelocityAveragingTime;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, usiValue:=10)
LD INST.bDone
ST bVarBOOL2
Example in ST:

INST(bExecute:= bVarBOOL1, usiNode:= 0, usiChannel:= 1, usiValue:=10);
bVarBool2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 66 User Manual PMCprimo SoftPLC

14.9 Drive

DriveCommand
PMCprimo-command: “”

Function library: Drive

Description:

With the function block DriveCommand ASCII-Commands can be executed for the current control
loop and speed controller of the drive. These commands are explained in a separate description.
A possible application would be for example, to modify the speed control parameters during
operation in order to compensate changing mass moment of inertias. However, the complete
parameterisation of the controller can also be executed.

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables are set
 to False or 0 except diValue
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
sCommand (String) The PMCtendo DD4 ASCII Command

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)
diValue (DINT) A possible value from the servo controller (depending on the used
 command)

Examples:

Declaration:

INST: DriveCommand;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, sCommand:=’I2T’)
LD INST.bDone
ST bVarBOOL2
Example in ST:

INST(bExecute:= bVarBOOL1, usiNode:= 0, usiChannel:= 1, sCommand:=’I2T’);
bVarBool2:=Inst.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 67

ASCIIToDrive
PMCprimo-command: QA

Function library: Drive

Description:

With the function block ASCIIToDrive you can open an ASCII channel to communicate with a
PMCtendo DD4 drive. With the parameter usiCanNetwork the CAN-Net is selected. The
parameter usiCanNode specifies the address of the PMCtendo DD4. It can communicate on the
actual channel with the drive commands described before. The command is channel specific so
you can communicate on every channel command with a different PMCtendo DD4.

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables are set
 to False or 0 except diValue
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
usiCanNetwork (USINT) 0: PMCtendo DD4 in CAN-Net, command must execute on the host
 node.
 1: PMCtendo DD4 in CANOpen
usiCanNode (USINT) The CAN node address (1 to 61)

sCommand (String) The PMCtendo DD4 ASCII Command

Output variables:

BDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)
diValue (DINT) A possible value from the servo controller (depending on the used
 command)

 14 Function library primo.lib

Page 68 User Manual PMCprimo SoftPLC

Examples:

Declaration:

ASCIIToDrive1: ASCIItoDrive;
bExecute2: BOOL;
bError2: BOOL;
iErrorNumber2: INT;
BDone2: BOOL

Example in IL:

CAL ASCIIToDrive1(bExecute := bExecute2, usiNode := 0, usiChannel := 1, usiCanNetwork :=
0, usiCanNode := 5)
LD ASCIIToDrive1.bDone
ST bDone2
Example in ST:

ASCIIToDrive1(bExecute := bExecute2, usiNode := 0, usiChannel := 1, usiCanNetwork := 0,
usiCanNode := 5);
bDone2:= ASCIIToDrive1.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 69

14.10 Encoder

DefineZeroMarkerInput
PMCprimo-command: DZ (Define zero marker input on/off)

Function library: Encoder

Description:

With this function block the zero marker of the encoder can be defined as reference signal. If 1 is
indicated, the zero marker of the encoder is used by PMCprimo as a reference signal.

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables are set
 to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
usiDefine (USINT) 1 zero track is defined, 0 zero track is switched-off

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Factory setting: 0 (not activated)

Examples:

Declaration:

INST: DefineZeroMarkerInput;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, usiDefine := 1)
LD INST.bDone
ST bVarBOOL2
Example in ST:

INST(bExecute:= bVarBOOL1, usiNode:= 0, usiChannel:= 1, usiDefine := 1);
bVarBool2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 70 User Manual PMCprimo SoftPLC

SetEncoderFeedbackChannel
PMCprimo-command: FC (Feedback change encoder)

Function library: Encoder

Description:

With this function block an encoder input which is normally determined for another axis, can be
deviated to the indicated axis. Shall for example an incremental encoder be connected with
PMCprimo Drive on axis 1 is this only possible with the command FC:

An encoder is for example a possible application, which is fitted after a gearbox and shall be used
as the actual value source for the motor. The encoder is connected at the free encoder input and
is allocated to the axis 2 with PMCprimo Drive. Axis 1 (motor axis) can take over the positions of
the axis 2 with this function and, therefore, the position control is calculated by this actual value.

The transport of goods which can slip is for example a further application. An additional encoder
acquires the actual position of the product.

A reference input or the encoder zero marker must be defined at the axis the
SetFeedbackChannel, SetFeedbackEncoder and NumberOfBits command refers to.

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables are set
 to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
usiValue (USINT) 0 no encoder information from another axis, 1 up to n (depending on
 the system) encoder information from the indicated axis

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Factory setting: 0 (switched off)

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 71

Examples:

Declaration:

INST: SetEncoderFeedbackChannel;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, usiValue:= 2)
LD INST.bDone
ST bVarBOOL2
Example in ST:

INST(bExecute:= bVarBOOL1, usiNode:= 0, usiChannel:= 1, usiValue:= 2);
bVarBool2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 72 User Manual PMCprimo SoftPLC

SetEncoderFilterTime
PMCprimo-command: PT (encoder filter)

Function library: Encoder

Description:

It is possible, to set the received encoder signals to an average via the set period. In case
“unsmooth” encoder signals are received, these ones can get smooth herewith. This function
block can only be used at an uncontrolled axis.

In case a torque peak is available with a master axis and with a certain position, this interference
can also be seen at the slave axis. The influence can be removed or decreased by this filter.

It can only be reacted on the speed changes at the uncontrolled axis later by the information.
Additionally they cause a static misalignment of the averaged position.

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables are set
 to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
uiValue (UINT) 0 no filter: 1 up to 10000 Milliseconds

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Also refer to:

SetEncoderScaling

Factory setting: 0 (switched off)

Examples:

Declaration:

INST: SetEncoderFilterTime;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, uiValue:= 50)
LD INST.bDone
ST bVarBOOL2
Example in ST:

INST(bExecute:= bVarBOOL1, usiNode:= 0, usiChannel:= 1, uiValue:= 50);
bVarBool2:=Inst.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 73

SetEncoderScaling
PMCprimo-command: MS (encoder scaling)

Function library: Encoder

Description:

With this function block the determined position can be scaled. The position is multiplied by 2value.
This possibility achieves an increase of the resolution of the measuring system with the function
block SetEncoderFilterTime. It is required, if a Slaveaxis with a high transmission ratio should
follow this Masteraxis. In case of a ratio of 10:1 the Slave must run 10 increments with each
increment of the Master. It is noticeable at the motor by noises and increased temperature
development. In case the position is graduated and averaged the transmission ratio is decreased
and this effect is reduced.

Typical values are 2 for the graduation and 8 for the information.

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables are set
 to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
usiValue (UINT) Set graduation: multiplication with 2Value, 0 no graduation, maximum 8

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Also refer to:

SetEncoderFilterTime

Factory setting: 0 (switched off)

Examples:

Declaration:

INST: SetEncoderScaling;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, usiValue:= 2)
LD INST.bDone
ST bVarBOOL2
Example in ST:

INST(bExecute:= bVarBOOL1, usiNode:= 0, usiChannel:= 1, usiValue:= 2);
bVarBool2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 74 User Manual PMCprimo SoftPLC

SetEncoderTimeout
PMCprimo-Command: TO

Function library: Encoder

Description: (Set timeout)

With this function block a timeout for the encoder signal is set. Depending on the pre-setting by Bit
6 of the function SetcontrolWord (page 182) the parameter is interpreted in a different way.

Bit 6 of the Function SetControlWord is 0:

After the start of a movement an encoder signal must be received by PMCprimo within the set
monitoring time. If PMCprimo does not receive any encoder signal before the monitoring time has
passed, PMCprimo switches off the controller release (motor is de-energised). The input of the
monitoring time for encoder signals is made in the unit milliseconds.

Bit 6 of the Function SetControlWord is 1:

After the start of a movement an encoder signal must be received by PMCprimo within the set
path (demand value specification). If PMCprimo does not receive any encoder signal within the
set path, PMCprimo switches off the controller release (motor is de-energised). The input of the
path for encoder signals is made in the unit increments.

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables are set
 to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
uiValue (UINT) The monitoring time or way

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected function:

SetcontrolWord

Factory setting: 500 Milliseconds

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 75

Examples:

Declaration:

INST: SetEncoderTimeout;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, uiValue:= 1000)
LD INST.bDone
ST bVarBOOL2
Example in ST:

INST(bExecute:= bVarBOOL1, usiNode:= 0, usiChannel:= 1, uiValue:= 1000);
bVarBool2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 76 User Manual PMCprimo SoftPLC

SetFeedbackEncoder
PMCprimo-command: FS (Feedback set encoder type)

Function library: Encoder

Description:

With this function block the type of the encoder can be set for every axis. The following selectable
possibilities for every axis are available.

• Incremental feedback encoder (SetFeedbackEncoder 0 - 2)

• SSI or Hiperface feedback encoder (SetFeedbackEncoder 5-8, 11-18)

• CANopen feedback encoder (SetFeedbackEncoder 9-10)

• Transmission of feedback encoder values with CANopen for PMCtendo DD4
(SetFeedbackEncoder 19-20)

With transmission of the demand positions with CANopen for PMCtendo DD4, the position control
is done by PMCtendo DD4 (SetFeedbackEncoder 21-26).

SetFeedback
Encoder

Option

0 Quadrature x 4

1 Quadrature x 2 (except channel 1 in PMCprimo Drive/2)

2 Quadrature x 1 (except channel 1 in PMCprimo Drive/2)

3 Reserved

4 Reserved

5 Hiperfache/SSI, relative position, binary; 300kHz

6 Hiperfache/SSI, relative position, gray code; 300kHz

7 Hiperfache/SSI, absolute position, binary; 300kHz

8 Hiperfache/SSI, absolute position, graycode; 300kHz

9 CANopen, relative position

10 CANopen, absolute position

11 SSI/Hiperface, relative position with high resolution
(as of version 1.009)

12 SSI/Hiperface, absolute position with high resolution
(as of version 1.009)

15 Hiperfache/SSI, relative position, binary; 100kHz

16 Hiperfache/SSI, relative position, gray code; 100kHz

17 Hiperfache/SSI, absolute position, binary; 100kHz

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 77

18 Hiperfache/SSI, absolute position, gray code; 100kHz

19 PMCtendo DD4, relative position (chose the PMCtendo DD4 with pd and
consider the reference.)

20 PMCtendo DD4, absolute position (chose the PMCtendo DD4 with pd and
consider the reference.)

21 CANopen, demand position, relative evaluation, positive reference signal (as
of version 2.000) (chose the PMCtendo DD4 with pd consider the
reference.)

22 CANopen, demand position, relative evaluation, negative reference signal
(as of version 2.000) (chose the PMCtendo DD4 with pd and consider the
reference.)

23 CANopen, demand position, absolute evaluation, offset set with command
RF (page 271) (as of version 2.000) (chose the PMCtendo DD4 with pd and
consider the reference.)

24 CANopen, demand position, relative evaluation, positive reference signal.
The actual following error and the actual current is received. (as of version
2.004) (chose the PMCtendo DD4 with pd and consider the reference.)

25 CANopen, demand position, relative evaluation, negative reference signal
The actual following error and the actual current is received. (as of version
2.000) (chose the PMCtendo DD4 with pd and consider the reference.)

26 CANopen, demand position, absolute evaluation, offset set with command
RF (page 271). The actual following error and the actual current is received.
(as of version 2.000) (chose the PMCtendo DD4 with pd and consider the
reference.)

In case of modifications of for example 4096 to 2048 increments/revolutions the position control
parameters change, too. In this case the factors will be double.

Enhancement as of version 1.009:

SetFeedbackEncoder 11 and 12, Hiperface relative and absolute:

In comparison with SetFeedbackEncoder 5,6 or 7,8 a higher resolution for the interchange of the
demand values is used.

 14 Function library primo.lib

Page 78 User Manual PMCprimo SoftPLC

Enhancement as of version 2.000:

This extension operates only with PMCtendo DD4 version 4.94 and higher.

SetFeedbackEncoder 21, 22 and 23 demand position with CANBus. The position control is made
by PMCtendo DD4. The position control of PMCprimo (SetProportionalGainConstant,
SetVelocityFeed-ForwardGain constant etc.) is not in use. With SetFeedbackEncoder 21 and 22
the latch function of PMCtendo DD4 can be activate. Therefore the drive command “IN2MODE”
must set to 26 and reference input is input 2 of PMCtendo DD4. (SAVE+COLDSTART must be
made)

The solution can set with the function block SetNumberOfBits command (page 83)
(SetNumberOfBits 24 means 4096 increments per revolution. The rolling direction can be set with
bit 5 of function block SetControlWord (page 182).

With SetFeedbackEncoder 21 and 22 the referencing is supported completely (InitialisePosition,
SetContinuousReferenceMode, SetReferenceOptionsWord, SetReferenceFilterOptionsWord,
SetReferenceFalseHighLimit, SetReferenceFalseLowLimit, SetReferenceTrueHighLimit,
SetReferenceTrueLowLimit). There must set no DefineZeroMarkerInput or DefineReferenceInput.
With FS21 or 22 no reference input of PMCprimo is allocated but referencing can be made.

Tip: With every PC command the actual position of the drive is read and the position counter of
PMCprimo is set to it. If the motor is moved manhandled the change is seen after the next PC
command. Therfore the position is not lost. After first switch on it isn’t made by relative position.
The actual position in PMCprimo is still present. The behavior is the same like an incremental
encoder.

As of version 2.004:

This extension operates only with PMCtendo DD4 version 5.15 and higher.

New settings “SetFeedbackEncoder 24” to 26. As with “SetFeedbackEncoder 21” to 23 the
demand position is sent to PMCtendo DD4 and the internal position loop of the PMCtendo DD4 is
used. The referencing with “INMODE2 26” is also available. The difference is that the actual
following error and the actual current is received.

To get the right value the drive commands “PGEARI” and “PGEARO “are changed automatically
from PMCprimo to 1048576 (if “PRBASE” is 20) or 65536 (if “PRBASE” is 16). The setting of the
following error (“PEMAX”) inside PMCtendo DD4 has to be adjusted by the customer.

The function should be only for service or adjusting. If the machine is finished then the
“SetFeedbackEncoder” should be set to “SetFeedbackEncoder 21” to 23 to decrease the bus load

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 79

Overview FS settings and technical data:

FS Description Delay time for demand

signal

Accuracy reference inputs

Number of

synchronous CAN

messages

PScope can

display

motor current

Following

error

available in

PMCprimo

Use of

position

loop of

PMCtendo

DD4

0 Incremental encoder

X4 multiplication

PMCprimo Drive

channel x.1:

4096

increments/turn

PMCprimo Drive

Channel x.1:

At the end of the 1ms

Interrupt. Depending of

processor load 200-

300us

Analogue output:

In the 1ms interrupt after

calculation of the position

loop. Depending of

processor load 200-

300us

Hardware register < 1us - Yes, with

PMCprimo

Drive and

channel x.1

Yes No

1 Incremental encoder

X2 multiplication

PMCprimo Drive

channel x.1:

2048

increments/turn

see FS0 Hardware register < 1us - Yes, with

PMCprimo

Drive and

channel x.1

Yes No

2 Incremental encoder

X1 multiplication

PMCprimo Drive

channel x.1:

1024increments/turn

see FS0 Hardware register < 1us - Yes, with

PMCprimo

Drive and

channel x.1

Yes No

5 SSI encoder :

relative position,

binary code

PMCprimo Drive

channel x.1 :

Hiperface

resolution with NB

changeable

relative position

see FS0 If PMCprimo Drive

channel x.1

Hardware register < 1us

With SSI encoder

1ms

- Yes, with

PMCprimo

Drive and

channel x.1

Yes No

6 SSI encoder :

relative position,

Gray code

PMCprimo Drive

channel x.1 :

Hiperface

resolution with NB

changeable

relative position

see FS0 If mcD channel x.1

Hardware register < 1us

With SSI encoder

1ms

- Yes, with

PMCprimo

Drive and

channel x.1

Yes No

7 SSI encoder :

absolute position,

binary code

PMCprimo Drive

see FS0 Referencing not possible - Yes, with

PMCprimo

Drive and

channel x.1

Yes No

 14 Function library primo.lib

Page 80 User Manual PMCprimo SoftPLC

FS Description Delay time for demand

signal

Accuracy reference inputs

Number of

synchronous CAN

messages

PScope can

display

motor current

Following

error

available in

PMCprimo

Use of

position

loop of

PMCtendo

DD4

channel x.1 :

Hiperface

resolution with NB

changeable

absolute position

8 SSI encoder :

absolute position,

Gray code

PMCprimo Drive

channel x.1 :

Hiperface

resolution with NB

changeable

absolute position

see FS0 Referencing not possible - Yes, with

PMCprimo

Drive and

channel x.1

Yes No

9 CAN open encoder

relative position

see FS0 Depending for CAN cycle
t
i
m
e

1,2 or 4ms

1 Yes, with

PMCprimo

Drive and

channel x.1

Yes No

10 CAN open encoder

absolute position

see FS0 Referencing not possible 1 Yes, with

PMCprimo

Drive and

channel x.1

Yes No

11 PMCprimo Drive

channel x.1

resolution with NB

changeable,

resolution of

demand speed with

DPRam depends

from NB setting,

relative position

see FS0 Hardware register < 1us - Yes, with

PMCprimo

Drive and

channel x.1

Yes No

12 PMCprimo Drive

channel x.1

resolution with NB

changeable,

resolution of

demand speed with

DPRam depends

from NB setting,

absolute position

see FS0 Referencing not possible - Yes, with

PMCprimo

Drive and

channel x.1

Yes No

15 see FS 5, frequency

100kHz

see FS0 If PMCprimo Drive

channel x.1

Not available

With SSI encoder

1ms

- Yes, with

PMCprimo

Drive and

channel x.1

Yes No

16 see FS 6, frequency

100kHz

see FS0 If PMCprimo Drive

channel x.1

- Yes, with

PMCprimo

Yes No

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 81

FS Description Delay time for demand

signal

Accuracy reference inputs

Number of

synchronous CAN

messages

PScope can

display

motor current

Following

error

available in

PMCprimo

Use of

position

loop of

PMCtendo

DD4

Not available

With SSI encoder

1ms

Drive and

channel x.1

17 see FS 7, frequency

100kHz

see FS0 Referencing not possible - Yes, with

PMCprimo

Drive and

channel x.1

Yes No

18 see FS 8, frequency

100kHz

Depending for CAN cycle

time. Transmission with

the next synchronisation

message.

1,2 or 4ms

Referencing not possible - Yes, with

PMCprimo

Drive and

channel x.1

Yes No

19 PMCtendo DD4

demand velocity

and actual position.

Relative position

see FS18 Depending for CAN cycle

time

1,2 or 4ms

2 Yes, with

version 3.56a

or 4.94a

Yes No

20 PMCtendo DD4

demand velocity

and actual position.

Absolute position

see FS18 Referencing not possible 2 Yes, with

version 3.56a

or 4.94a

Yes No

21 PMCtendo DD4

demand position

Relative position

and positive

reference signal

see FS18 Hardware register

PMCtendo DD4 < 1us

1 No No Yes

22 PMCtendo DD4

demand position

Relative position

and negative

reference signal

see FS18 Hardware register

PMCtendo DD4 < 1us

1 No No Yes

23 PMCtendo DD4

demand position

Absolute position

see FS18 Referencing not possible 1 Nein No Yes

24 See FS21 but with

following error and

actual current

see FS18 Hardware register

PMCtendo DD4 < 1us

2 Yes, with

version 5.x

Yes Yes

25 See FS22 but with

following error and

actual current

see FS18 Hardware register

PMCtendo DD4 < 1us

2 Yes, with

version 5.x

Yes Yes

26 See FS23 but with

following error and

actual current

see FS18 Referencing not possible 2 Yes, with

version 5.x

Yes Yes

 14 Function library primo.lib

Page 82 User Manual PMCprimo SoftPLC

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables are set
 to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
usiValue (USINT) The selected kind of the encoder

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected function:

SetNumberOfBits

Factory setting: 0 (Quad incremental evaluation)

Examples:

Declaration:

INST: SetFeedbackEncoder;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, usiValue:= 8)
LD INST.bDone
ST bVarBOOL2
Example in ST:

INST(bExecute:= bVarBOOL1, usiNode:= 0, usiChannel:= 1, usiValue:= 8);
bVarBool2:=Inst.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 83

SetNumberOfBits
PMCprimo-command: NB (Set number of bits for SSI encoder)

Function library: Encoder

Description:

With this function block the number of the data bits can be set for every axis when using a SSI-,
Hiperface- or CAN-open-encoder. As a result SSI-, Hiperface- and CAN-open-encoder types of
simple 12bit Singleturn up to 25bit Multiturn models can be used..

Special feature with Hiperface:

For Hiperface-encoder always 12 Bit of the NB-value are reserved for the number of the
revolutions. The remaining Bits indicate the resolution per revolution.
For NB28 for example the motor runs 65.536 increments per reveolution.

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables are set
 to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
usiValue (USINT) The number of the entire Bits

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

SetFeedbackEncoder

Factory setting: 24

Examples:

Declaration:

INST: SetNumberOfBits;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, usiValue:= 26)
LD INST.bDone
ST bVarBOOL2
Example in ST:

INST(bExecute:= bVarBOOL1, usiNode:= 0, usiChannel:= 1, usiValue:= 26);
bVarBool2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 84 User Manual PMCprimo SoftPLC

14.11 Mapping

Generation and execution of tabular position allocations (=Map) or software-gear functions
between axes in the Master-Slave-Operation.

An associated position of the slave axis is defined for every position of the master-axis by a
tabular or linear position allocation.

The master axis can control an input, however, it is also possible that the master axis only works
as receiver of encoder pulses (e.g. transmission shaft, vertical shaft) or as virtual axis (e.g. speed
controlled indexing function).

If a position allocation is activated the corresponding position from the table is allocated to the
slave axis as demand position.

It is sufficient in simple cases to define a linear allocation as software gear between master and
slave axis. This software-gear function LINEAR is available in PMCprimo as tabular position
allocation. The gear ratio master/slave can be set with the SM-command.

The tabular position allocation is used for more complex applications. It also counts, the more
entries in the table, the more exact the master-slave allocation becomes, as PMCprimo carries out
a linear interpolation between the various table positions.

Mechanical gear functions as curve gears or valve tappets on a camshaft can be simulated with
the tabular position allocation and easily be replaced by the definition of a position allocation .

Illustration 10: Simple position allocations

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 85

If master and slave axes move within a given range (e.g. XY-table), a position allocation must be
carried out for the required range. The position bound needs not to be set in this case (factory
setting of SetBound can be maintained), as the motors do not continuously run in the same
direction.

The following picture shows a typical tabular position allocation. The slave axis is for example a
cutting tool and the master axis is for example the material transport. The speed of the master
axis shall vary so that the material speed within the machine remains constant. The slave axis
always runs to the corresponding demand position by the usage of a tabular position allocation
independent on the current speed of the master axis (the cutting tool always remains in the
correct position to the material transport).

Illustration 11: Position allocation for a defined range

The position allocation which is shown in Illustration 11 can also refer to the application, in which
the master axis behaves itself like a transmission shaft and the slave axis follows the shown
position profile with every rotation of the transmission shaft (= vertical shaft). For this application
the position bound of the master must be set to one rotation of the transmission shaft with the
function SetPositionBound (page 133).

In case the master and/or slave axis behaves itself in a cyclic way the position bound must be set
on every axis. The tabular position allocation must be defined in such a way that the position
transitions at the cycle limits runs continuously. In case of intermittent transitions at the cycle limits
sharp changes of the speed can occur at the slave axis.

In case the transition of the position values at the cycle limit of the slave axis is not continuous,
the difference between the actual position bound and demand position bound effects a relative
misalignment between slave and master axis. This error adds up over several cycles of the
machine and behaves as constant drift of the slave axis. It is difficult to diagnose this problem,
however, it can be avoided with a corresponding design of the tabular position allocation.

 14 Function library primo.lib

Page 86 User Manual PMCprimo SoftPLC

The tabular position allocation must cover the complete position bound of the master axis from 0
up to the cycle limit. The slave axis must know the position bound of the master axis enabling it to
calculate its speed and its demand position beyond the cycle limit. It happens automatically when
starting the execution of a tabular position allocation with the function MapLinkSlaveToMaster
(page 104). The position bound of the master axis is automatically transmitted to the associated
slave axis.

Illustration 12: position allocation for a cyclic machine

The diagram shown in Illustration 12 indicates a system in which the master and slave axes
execute their cycles in the same time with identical position bounds, although they cover different
distances. A coincidence of position bound and cycle time is not required. In practice neither
position bound s nor cycle times coincide with linear software gear units, except of 1:1 gear units.
The differences of position bound and cycle time between master and slave axes do not cause
any problems when executing a tabular position allocation. It is also possible to exceed the
position bound when executing a tabular position allocation with the slave position without
problems. In this case the slave axis automatically compensates the zero point of your position
bound when achieving the cycle limit.

The position allocation between master and slave axes can be loaded with an Offset-value with
both axes. These Offset-values (SetMapBaseOffset and SetSlaveMapOffset (page 138) displace
the relation master-slave along the position axis of the master or slave respectively. The value of
the SetMapBaseOffset function is subtracted from the position of the master axis before the
position enters the allocation. This effects a displace of the position allocation line to the right (see
graph mentioned below). The value of the SetSlaveMapOffset function is added to the position of
the slave axis, before the position enters the allocation effecting a displacement of the position
allocation line upwards. The functions SetMapBaseOffset and SetSlaveMapOffset allow that one
or all slave axes can be displaced or turned relatively to the master axis, even if the allocation
master-slave is executed.

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 87

Illustration 13: effects positionoffset

The data of the position table are entered as absolute position of the slave axis. During the input
of absolute positions for the slave axes each value represents the demand position of the slave
axis in connection to the master axis. The associated master positions result from the position
bound / number positions.

The table positions are centrally stored. Therefore, position allocations which are used in several
axes must only be set once.

The data of the position allocation are transmitted to the particular axis with the function
TransferMapData (page 139). This function must be uniquely executed before the first execution
of the function ExecuteMap to the corresponding axis.

The first position of the master is always 0 during the enter of position allocations. Only the
entered table values are stored. The values between the table positions are determined by linear
interpolations, if the table step range is bigger than 1. This enables the user to prepare easily a
position allocation with relatively few table values over a big allocation range without occupying
much memory space.

Position allocations can internally be generated with the option “Motiongenerator”, if the option is
released with the SK-command.

The software function differential allows the synchronisation of a drive in such a way that it can
follow both the sum and the difference of the positions of two master drives.

This takes place analogue to a differential gear unit. The slave axis must be defined as slave of a
master axis with the function MapLinkSlaveToMaster (page 104) and as slave of a second master
axis (differential axis) with the function MapLinkSlaveToDifferentialMaster (page 102). The Bits 4 –
6 of the function SetMapLinkOptionsWord (page 201) determine, how the slave axis evaluates the
positions of the master axis and Bit 0 of the function SetMapLinkOptionsWord determines, if the
master or the differential axes transmit their demand or actual positions to the slave axis.

 14 Function library primo.lib

Page 88 User Manual PMCprimo SoftPLC

The status of the master axis is arbitrary as far as the definitions as slave axis are correctly
executed. Additionally it is important that the settings with the LW-command (at the master and
slave axes) have been carried out before executing the function MapLinkSlaveToMaster.
Modifications at the LW-command are only effective after unlink and new link to the master
channel.

Illustration 14: Example for softwaredifferential (complex)

The different parameters for the execution of a position allocation can be summarised into the
following equation. All parameters are to be set at the slave axis, except it is referred explicitly to
the master axis.

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 89

 ExecuteMap PosName

 Slave demand position = (Table [±Masterposition - MB] x SM) +MF

LW Bit6 LW Bit 0
(at the Master)

Illustration 15: Position allocation as equation

SM SetScaleMapping

MB SetMapBaseOffset

MF SetSlaveMapOffset

 S = {Table [±(Mp ±(Md x SBMaster/SBDiffmaster)) - MB] x SM} + MF

 LW Bit5

Illustration 16: Position allocation with differential as equation

S Demand position Slave axis

Mp Position first master axis (MapLinkSlaveToMaster)

Md Position differential master axis (MapLinkSlaveToDifferentialMaster)

SBMaster Position bound master axis

SBDiffmaster Position bound differential master axis

 14 Function library primo.lib

Page 90 User Manual PMCprimo SoftPLC

DefineMap
PMCprimo-command: EM (Edit map)

Function library: Mapping

Description:

With this function block a table allocation can be defined.

The program PMotion can be used for the generation of a prefabricated function block with
all necessary variables. The definition is essentially facilitated with this program, as the
curve generation is carried out graphically. From this data a function block can be exported,
which only has one start input (bExecute) and internally carries out all necessary
initialisations.

Input variables:

bExecute (BOOL) The table allocation is defined in case of a change from 0 to 1
 0 resets the function block and the output variables are set
 to False or 0
sMapname (STRING) The name of the table
diMasterBound (DINT) The master position bound
iSteps (INT) The number of the table support value (maximum 2000)
pdiSlavepos(POINTER) Pointer to Array with the table support value

Output variables:

bDone (BOOL) Table allocation (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see page 203)

Example of a function block from PMotion:

The function block (ST) itself is built-up in such a way:

Declaration:

FUNCTION_BLOCK Motion1
VAR_INPUT
 bExecute: BOOL;
END_VAR
VAR_OUTPUT
 bDone: BOOL:=FALSE;
 bError: BOOL;
 iErrorNumber: INT;
END_VAR
VAR
 Map1: DefineMap;
 iCount: INT;
 diSlavepos: ARRAY[1..201] OF DINT;
END_VAR

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 91

Implementation:

IF bExecute = TRUE AND bDone = FALSE THEN
 IF iCount = 0 THEN
 diSlavepos[1]:=0;
 diSlavepos[2]:=0;

 …
 diSlavepos[200]:=1000;
 diSlavepos[201]:=1000;
 Map1.bExecute:=TRUE;
 Map1.sMapName:='Motion1';
 Map1.diMasterBound:=1000;
 Map1.iSteps:=201;
 Map1.pdiSlavepos:=ADR(diSlavepos[1]);
 iCount:=1;
 END_IF
 Map1();
 bDone:=Map1.bDone;
 bError:=Map1.bError;
 iErrorNumber:=Map1.iErrorNumber;
END_IF
IF bExecute = FALSE THEN
 Map1.bExecute:=FALSE;
 Map1();
 (* Reset FB *)
 bDone:=Map1.bDone;
 bError:=FALSE;
 iErrorNumber:=0;
 iCount:=0;
END_IF

 14 Function library primo.lib

Page 92 User Manual PMCprimo SoftPLC

ExecuteMap
PMCprimo-command: XM (Execute map)

Function library: Mapping

Description:

With this function block an available position allocation is activated. The activation is carried out at
the slave axis. Before activation of the position allocation the master-slave relation must be
defined with the function block MapLinkSlaveToMaster and the table must be loaded with the
function block TransferMapData onto the axis. The position of the master axis is automatically,
after connection of the slave axis with the master axis transferred to the same by the host. An
active position allocation is signalled with “X” at the monitor with selected slave axis. The stop and
abort commands de-activate a position allocation.

The linear position allocation is already pre-defined by the name LINEAR.

The position allocation LINEAR is especially used for the execution of transmission ratios
specified with the function block SetScaleMapping.

Non-linear position allocations must be generated with the program PMotion as table or
PMCprimo program and must be downloaded to the control.

The position allocation can be activated with stationary or moving master axes.

1. Activation with stationary master axis:

The slave axis moves according to the activated position allocation to the corresponding position
which is allocated to the slave axis for the instantaneous position of the master axis. In case of an
active software clutch (Bit 1 Function SetMapOptionsWord (age 101) the slave axis waits in the
instantaneous position until the master axis is in the position corresponding to the position
allocation and couples then. If the master runs a speed which is smaller/equal to 500Incr/sec the
slave also couples without software clutch. The master speed should be brought to an average
for that with the function SetMapBaseAdvanceTimeConstant (page 119).

2. Activation with moving master axis:

The activation of the position allocation with moving master axis must be executed by the aid of
the software clutch (Bit 1 SetMapOptionsWord).

The execution of the function block ExecuteMap with activated web tension control with
SetAnalogueControlMode is influenced by the Bits 4 and 5 of the function
SetAnalogueControlWord (page 292).

For a speed allocation (Bit 4 command SetMapOptionsWord) only linear Maps (ExecuteMap
LINEAR) are allowed.

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 93

Input variables:

bExecute (BOOL) The position allocation is started in case of a change from 0 to 1
 0 resets the function block and the output variables are set
 to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
sMapname (STRING) The name of the Map

Output variables:

bDone (BOOL) Position allocation active (True) or coupling process or transient drive
 is not finished (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected function:

SetMapOptionsWord, MapLinkSlaveToMaster, SetScaleMapping, SetMapBaseOffset and
SetSlaveMapOffset

Examples

Declaration:

INST: ExecuteMap;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, sMapname:= ‘Name’)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST (bExecute:=bVarBOOL1, usiNode:=0, usiChannel:=1, sMapname:=’Name’);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 94 User Manual PMCprimo SoftPLC

ExecuteMapVirtual
PMCprimo-Command: XV (execute map virtual)

Function library: Mapping

Description:

With this function block a slave position can be determined with the specified master position and
the position table “Name”. As a result the slave position can be read for example in a variable
without coupling. All settings (SetMapBaseOffset, SetSlaveMapOffset etc.) are observed
analogue to ExecuteMap (page 94).

The position table must have been transmitted before with TransferMapData to the axis.
MapLinkSlaveToMaster must have been executed at the axis.

Input variables:

bExecute (BOOL) The value is read in case of a change from 0 to 1
 0 resets the function block and the output variables are set
 to False or 0 except diValue.
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
sMapname (STRING) The name of the Map

Output variables:

bDone (BOOL) Value has been read (True) or is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)
diValue (DINT) The determined slave position

Connected function:

SetMapOptionsWord, MapLinkSlaveToMaster, SetScaleMapping, SetMapBaseOffset and
SetSlaveMapOffset

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 95

Examples:

Declaration:

INST: ExecuteMapVirtual;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;
diValue:DINT;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, sMapname:= ‘Name’)
LD INST.bDone
ST bVarBOOL2
LD INST.diValue
ST diValue

Example in ST:

INST(bExecute:=bVarBOOL1, usiNode:=0, usiChannel:=1, sMapname:=’Name’);
bVarBOOL2:=Inst.bDone;
diValue:=Inst.diValue;

Example in FBD:

 14 Function library primo.lib

Page 96 User Manual PMCprimo SoftPLC

GetMappedMasterBound
PMCprimo-Command: GM (Get mapped master axis bound position)

Function library: Mapping

Description:

With this function block the position bound, which has been passed over from the master axis to
the slave axis, can be read-out. This control function of the GM-command can be used to
determine if the position allocation behaves as scheduled.

The calculated value can be displayed with the command GM. If mapping is not active, the
SetPositionBound value (page 133) is displayed.

Input variables:

bExecute (BOOL) The value is read in case of a change from 0 to 1
 0 resets the function block and the output variables are set
 to False or 0 except diValue.
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)

Output variables:

bDone (BOOL) Value has been read (True) or is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

diValue (DINT) The position bound of the master axis

Connected function:

SetMapOptionsWord, MapLinkSlaveToMaster, SetScaleMapping, SetMapBaseOffset and
SetSlaveMapOffset

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 97

Examples:

Declaration:

INST: GetMappedMasterBound;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;
diValue:DINT;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1)
LD INST.bDone
ST bVarBOOL2
LD INST.diValue
ST diValue

Example in ST:

INST(bExecute:=bVarBOOL1, usiNode:=0, usiChannel:=1);
bVarBOOL2:=Inst.bDone;
diValue:=Inst.diValue;

Example in FBD:

 14 Function library primo.lib

Page 98 User Manual PMCprimo SoftPLC

GetWrapAroundOffset
PMCprimo-Command: GW (Get wraparound offset value)

Function library: Mapping

Description:

With this function block the internally calculated offset value can be read-out at the slave axis
during the wraparound (cycle limit). This control function can be used to determine if the position
allocation behaves as scheduled. Additionally it can be determined if the behaviour of the slave
axis during the wraparound is correct.

The value is internally calculated by the processor. The given value is only valid after activation of
the position allocation. The reading of the GetWrapAroundOffset-value can only be carried out on
the slave-axis.

The value must amount to the value 0 or +/- position bound in the simple case, when the position
bound at the master and slave axes are identical. If the value changes upwards or downwards in
course of time the axis drifts away. The settings of the position allocation must be checked in any
case.

Input variables:

bExecute (BOOL) The value is read in case of a change from 0 to 1
 0 resets the function block and the output variables are set
 to False or 0 except diValue
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)

Output variables:

bDone (BOOL) Value has been read (True) or is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)
diValue (DINT) The calculated Offset value during wraparound

Connected function:

SetMapOptionsWord, MapLinkSlaveToMaster, SetScaleMapping, SetMapBaseOffset and
SetSlaveMapOffset

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 99

Examples

Declaration:

INST: GetWrapAroundOffset;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;
diValue:DINT;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1)
LD INST.bDone
ST bVarBOOL2
LD INST.diValue
ST diValue

Example in ST:

INST(bExecute:=bVarBOOL1, usiNode:=0, usiChannel:=1);
bVarBOOL2:=Inst.bDone;
diValue:=Inst.diValue;

Example in FBD:

 14 Function library primo.lib

Page 100 User Manual PMCprimo SoftPLC

LengthOfAlignmentMove
PMCprimo-Command: XX (length of alignment move)

As of version 2.004 available

Function library: Mapping

Description:

With this command the necessary alignment move for the position table “name” can be aquired,
which are made automatically after the start of the function block ExecuteMap (Bit 0 of
MapLinkSlaveToMaster [page 127] must be set to 0). Thus it is possible to check the alignment
move before the execution of ExecuteMap. The function block must always run on the slave axis.

The position table must be tranferred to the axis with the command TransferMapData. On the
axis MapLinkSlaveToMaster must be done.

Input variables:

bExecute (BOOL) The value is read in case of a change from 0 to 1
 0 resets the function block and the output variables are set
 to False or 0 except diValue.
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
sMapname (STRING) The name of the Map

Output variables:

bDone (BOOL) Value has been read (True) or is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)
diValue (DINT) The determined alignment move

Connected function:
SetMapOptionsWord, MapLinkSlaveToMaster, SetScaleMapping, SetMapBaseOffset und
SetSlaveMapOffset

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 101

Examples:

Declaration:

INST: LengthOfAlignmentMove;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;
diValue:DINT;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, sMapname:= ‘Map01’)
LD INST.bDone
ST bVarBOOL2
LD INST.diValue
ST diValue

Example in ST:

INST(bExecute:=bVarBOOL1, usiNode:=0, usiChannel:=1, sMapname:= Map01’);
bVarBOOL2:=Inst.bDone;
diValue:=Inst.diValue;

Example in FBD:

 14 Function library primo.lib

Page 102 User Manual PMCprimo SoftPLC

MapLinkSlaveToDifferentialMaster
PMCprimo-Command: NL (Map link slave axis to differential master axis)

Function library: Mapping

Description:

With this function block the instantaneous axis is defined as the slave axis of a 2. master
(differential). The value indicates the requested differential-master axis. This command must be
used before activation of a position allocation if a differential master is necessary. Software
differential also refer to the function on page 125.

Input variables:

bExecute (BOOL) The value is read in case of a change from 0 to 1
 0 resets the function block and the output variables are set
 to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
usiLinkNode (USINT) The node number of the master axis
usiLinkChannel (USINT) The axis number of the master axis

Output variables:

bDone (BOOL) Definition closed (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected function:

SetMapLinkOptionsWord

Factory setting: No master axis defined

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 103

Examples:

Declaration:

INST: MapLinkSlaveToDifferentialMaster;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, usiLinkNode := 0,
 usiLinkChannel := 2)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute:=bVarBOOL1, usiNode:=0, usiChannel:=1, usiLinkNode:=0, usiLinkChannel:=2);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 104 User Manual PMCprimo SoftPLC

MapLinkSlaveToMaster
PMCprimo-Command: ML (Map link slave axis to master axis)

Function library: Mapping

Description:

With this function block the instantaneous axis is determined as slave axis. The arguments
indicate the requested master axis. This command must be used before activation of a position
allocation in any case, as PMCprimo cannot execute a position allocation without definition of a
master axis.

Input variables:

bExecute (BOOL) The value is read in case of a change from 0 to 1
 0 resets the function block and the output variables are set
 to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
usiLinkNode (USINT) The node number of the master axis
usiLinkChannel (USINT) The axis number of the master axis

Output variables:

bDone (BOOL) Definition closed (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected function:

SetMapLinkOptionsWord

Factory setting: no master axis defined

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 105

Examples:

Declaration:

INST: MapLinkSlaveToMaster;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, usiLinkNode := 0,
 usiLinkChannel := 2)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute:=bVarBOOL1, usiNode:=0, usiChannel:=1, usiLinkNode:=0, usiLinkChannel:=2);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 106 User Manual PMCprimo SoftPLC

Motiongenerator
PMCprimo-Command: $M...

Function library: Mapping

Description:

With this function block a table allocation can be calculated by the internal motion generator.

The program PMotion can be used for generation of a pre-manufactured function block with
all necessary variables. The definition is essentially facilitated by this program as the curve
position is carried out graphically. A function block can be exported from these data which
has one start input (bExecute) and internally carries out all required initialisation.

Input variables:

bExecute (BOOL) The table is calculated in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0 (corresponds to $MSTART *)
sMapName (STRING) Name of the generated table (corresponds to $MNAME)
iSteps (INT) Number of the supporting points (corresponds to $MNPT)
iNumberElements (USINT) Number of the segments
pdiMasterpos (PDINT) Pointer to the master positions (corresponds to $MMx)
pdiSlavepos (PDINT) Pointer to the slave positions (corresponds to $MSx)
pdiFunction (PDINT) Pointer to the relation functions (corresponds to $MFx)
pdiValuesA (PDINT) Pointer to the marginal parameter (corresponds to $MAx)
pdiValuesB (PDINT) Pointer to the marginal parameter (corresponds to $MBx)
pdiValuesC (PDINT) Pointer to the marginal parameter (corresponds to $MCx)
pdiValuesW (PDINT) Pointer to the marginal parameter (corresponds to $MWx)
pdiValuesX (PDINT) Pointer to the marginal parameter (corresponds to $MXx)
pdiValuesY (PDINT) Pointer to the marginal parameter (corresponds to $MYx)
pdiValuesZ (PDINT) Pointer to the marginal parameter (corresponds to $MZx)

Output variables:

bDone (BOOL) Table has been calculated (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Example of a function block from PMotion:

The function block (ST) itself is designed in such a way:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 107

Declaration:

FUNCTION_BLOCK Motion2
VAR_INPUT
 bExecute: BOOL;
END_VAR
VAR_OUTPUT
 bDone: BOOL:=FALSE;
 bError: BOOL;
 iErrorNumber: INT;
END_VAR
VAR
 iCount: INT;
 Motion: Motiongenerator;
 sMapName: STRING:='Motion2'; (* $MName *)
 iSteps: INT:=1000; (* $MNPT *)
 iNumberElements: USINT:=1;
 diMasterpos: ARRAY [0..1] OF DINT := 0,1000; (* $MMx *)
 diSlavepos: ARRAY [0..1] OF DINT := 0,1000; (* $MSx *)
 diFunction: ARRAY [1..1] OF DINT := 9; (* $MFx *)
 diValuesA: ARRAY [1..1] OF DINT := 0; (* $MAx *)
 diValuesB: ARRAY [1..1] OF DINT := 0; (* $MBx *)
 diValuesC: ARRAY [1..1] OF DINT := 0; (* $MCx *)
 diValuesW: ARRAY [1..1] OF DINT := 12201110; (* $MWx *)
 diValuesX: ARRAY [1..1] OF DINT := 0; (* $MXx *)
 diValuesY: ARRAY [1..1] OF DINT := 0; (* $MYx *)
 diValuesZ: ARRAY [1..1] OF DINT := 0; (* $MZx *)
END_VAR

Implementation:

IF bExecute = TRUE AND bDone = FALSE THEN
 Motion.bExecute := TRUE;
 IF iCount = 0 THEN
 (* Set Variables *)
 Motion.sMapName := sMapName;
 Motion.iSteps := iSteps;
 Motion.iNumberElements := iNumberElements;
 Motion.pdiMasterpos := ADR(diMasterpos);
 Motion.pdiSlavepos := ADR(diSlavepos);
 Motion.pdiFunction := ADR(diFunction);
 Motion.pdiValuesA := ADR(diValuesA);
 Motion.pdiValuesB := ADR(diValuesB);
 Motion.pdiValuesC := ADR(diValuesC);
 Motion.pdiValuesW := ADR(diValuesW);
 Motion.pdiValuesX := ADR(diValuesX);
 Motion.pdiValuesY := ADR(diValuesY);
 Motion.pdiValuesZ := ADR(diValuesZ);
 iCount := 1;
 END_IF
 Motion();
 bDone:= Motion.bDone;
 bError := Motion.bError;
 iErrorNumber := Motion.iErrorNumber;
END_IF
IF bExecute = FALSE THEN
 iCount := 0;
 Motion.bExecute := FALSE;
 Motion();
 (* Reset FB *)

 14 Function library primo.lib

Page 108 User Manual PMCprimo SoftPLC

 bDone := Motion.bDone;
 bError := FALSE;
 iErrorNumber := 0;
END_IF
This function block can be changed in such a way that for example single sections can be
modified via variables. For that the function block generated by Pmotion must only be extended in
a minimum way in CoDeSys. For that a new input variable is declared and this variable overwrites
then the reserved value into the Arrays.

Extension for a further input variable:

Declaration:

FUNCTION_BLOCK Motion2
VAR_INPUT
 bExecute: BOOL;
 diEndposition; DINT;
END_VAR
… further Code not modified

Implementation:

IF bExecute = TRUE AND bDone = FALSE THEN
 Motion.bExecute := TRUE;
 IF iCount = 0 THEN
 (* Set Variables *)
 Motion.sMapName := sMapName;
 Motion.iSteps := iSteps;
 Motion.iNumberElements := iNumberElements;
 diSlavepos[1] := diEndposition;
 Motion.pdiMasterpos := ADR(diMasterpos);
 Motion.pdiSlavepos := ADR(diSlavepos);
 Motion.pdiFunction := ADR(diFunction);
 Motion.pdiValuesA := ADR(diValuesA);
 Motion.pdiValuesB := ADR(diValuesB);
 Motion.pdiValuesC := ADR(diValuesC);
 Motion.pdiValuesW := ADR(diValuesW);
 Motion.pdiValuesX := ADR(diValuesX);
 Motion.pdiValuesY := ADR(diValuesY);
 Motion.pdiValuesZ := ADR(diValuesZ);
 iCount := 1;
 END_IF
… further Code not modified

Of course it depends on the required modification, how many and which variables shall
additionally be added and overwrite the specified values. The PMotion supplies only the basic
structure in this case, in order to simplify the first programming.

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 109

SetAlignmentAcceleration
PMCprimo-Command: AA (Set map base/offset/scale factor adjustment acceleration)

Function library: Mapping

Description:

The modification/introduction of a Positionoffset (SetMapBaseOffset and SetSlaveMapOffset page
123), or of the transmission ratio (SetScaleMapping page 109) results in a new soft position for
the slave axis. PMCprimo can determine the acceleration ramp for achieving the alignment-
velocity by the aid of the parameter. The indication of the parameter is made in increments /
seconds2. The parameter is to be set at the slave axis. If the parameter is 0, it is accelerated with
a jump.

The equation velocity is set with the function SetMapAdjustmentVelocity.

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or
 Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
diAcceleration (DINT) The alignment acceleration
As of Primo_V2_006.lib: diAcceleration (UDINT)

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: An error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected function:

SetMapBaseOffset, SetSlaveMapOffset and SetMapAdjustmentVelocity

Factory setting: 0 (jump to alignment velocity)

 14 Function library primo.lib

Page 110 User Manual PMCprimo SoftPLC

Examples:

Declaration:

INST: SetAlignmentAcceleration;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, diAcceleration:=100000)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute:=bVarBOOL1, usiNode:=0, usiChannel:=1, diAcceleration:=100000);
bVarBOOL2:=Inst.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 111

SetClutchLength
PMCprimo-Command: CL (Set clutch length)

Function library: Mapping

Description:

The software clutch length is only active, if Bit 5 of SetMapOptionsWord (page 127) is set to 1. If
Bit 5 is set to 0 the software clutch time (SetClutchTime page 113) is active. This function block
indicates the acceleration ramp as distance for the function of the software clutch. The function
software clutch is activated with Bit 0, the function block SetMapOptionsWord. The software clutch
function is designed for switching the slave axis to a driving master axis. The software clutch
functions as a mechanical fixed point clutch which couples point-exactly while driving. The slave
axis waits in the instantaneous position until the master axis achieves the driving position. For a
velocity synchronous operation a value for n≠0 should be specified for the switching to the running
master at the slave axis for SetClutchLength.

The value n=4194304 represents the longest possible and the value n=0 the shortest possible
way as clutch length. The specification of the clutch length is executed at the slave axis, the
indicated distance in increments, however, refers to the master axis.

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or
 Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
diValue (DINT) The coupling distance in increments of the master
Ab Primo_V2_006.lib: udiValue (UDINT)

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected function:

SetMapOptionsWord and SetClutchTime

Factory setting: 1000 increments

 14 Function library primo.lib

Page 112 User Manual PMCprimo SoftPLC

Examples:

Declaration:

INST: SetClutchLength;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, diValue:=1000)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute:=bVarBOOL1, usiNode:=0, usiChannel:=1, diValue:=1000);
bVarBOOL2:=Inst.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 113

SetClutchTime
PMCprimo-Command: CT (Set clutch time)

Function library: Mapping

Description:

The software clutch time is only active, if Bit 5 is set to 0 by SetMapOptionsWord (page 101). If Bit
5 is set to 1, the software clutch length (SetClutchTime page 113) is active. This function block
indicates the acceleration ramp as time-slot pattern for the function of the software clutch. The
function software clutch is activated with Bit 0 to the function block SetMapOptionsWord. The
software clutch function is designed for connecting the slave axis to a driving master axis. The
software clutch functions as a mechanical fixed point clutch which couples point-exactly while
driving. The slave axis waits in the instantaneous position until the master axis achieves the
driving position. For a velocity synchronous operation a value for n≠0 should be specified for
connecting the running master at the slave axis for SetClutchTime.

The value n=20000 represents the longest and the value 0 the shortest clutch time. The clutch
time is indicated in milliseconds.

Illustration 17: Behaviour software clutch

 14 Function library primo.lib

Page 114 User Manual PMCprimo SoftPLC

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or
 Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
uiClutchtime (UINT) The coupling time in milliseconds
 Range of values: 1 to 20.000

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected function:

SetMapOptionsWord and SetClutchLength

Factory setting: 1000 milliseconds

Examples:

Declaration:

INST: SetClutchTime;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, uiClutchtime:=200)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute:=bVarBOOL1, usiNode:=0, usiChannel:=1, uiClutchtime:=200);
bVarBOOL2:=Inst.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 115

SetClutchWindow
PMCprimo-Command: CI (Set clutch window)

Function library: Mapping

Description:

This command defines a window for software clutch.
If SetClutchWindow ≠ 0 and the way for alignment is lower than CI the slave makes an alignment
move.
If SetClutchWindow ≠ 0 and the way for alignment is higher than CI the slave is using software
clutch.
Bit 1 of the function block SetMapOptionsWord is ignored. But bit 2 and 3 is used for the clutch
window. If the master is moving the clutch window is ignored. The clutch window can’t used in
speed mapping (bit4 of SetMapOptionsWord) and in tension control.

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or
 Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
diValue (UINT) position window
Ab Primo_V2_006.lib: uiValue (UINT)

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected function:

SetMapOptionsWord

Factory setting: 0 increments

 14 Function library primo.lib

Page 116 User Manual PMCprimo SoftPLC

Examples:

Declaration:

INST: SetClutchTime;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, uiClutchtime:=200)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute:=bVarBOOL1, usiNode:=0, usiChannel:=1, uiClutchtime:=200);
bVarBOOL2:=Inst.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 117

SetMapAdjustmentVelocity
PMCprimo-Command: AV (Set map base/offset/scale factor adjustment velocity)

Function library: Mapping

Description:

The modification/introduction of the map base offset or map offset (SetMapBaseOffset and
SetSlaveMapOffset page 138), or the scale map (SetScaleMapping page 136), provides a new
demand position for the slave axis. PMCprimo can limit the maximum velocity during the
alignment by the aid of the factor. A position modification is not aligned with a single non-
sequential demand value change in case of a modification/introduction of
positionoffset/transmission ratio with a factor ≠ 0. The alignment velocity is indicated in percentage
starting from the actual demand velocity. If the actual demand velocity is 0, the alignment is
executed with the velocity on the basis of the function SetSlowSpeed

The modification of the scale map ratio with an active position allocation at the slave axis also
requires a velocity modification. The function acts in this case exactly as with the modification of a
position offset. The value is to be given at the slave axis.

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or
 Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
usiPercent (USINT) The velocity from 1 to 200 percent , 0 jump

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected function:

SetAlignmentAcceleration, SetSlowSpeed, SetScaleMapping, SetMapBaseOffset and
SetSlaveMapOffset

Factory setting: 0 (jump to a new position)

 14 Function library primo.lib

Page 118 User Manual PMCprimo SoftPLC

Examples

Declaration:

INST: SetClutchTime;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, usiPercent:=100)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute:=bVarBOOL1, usiNode:=0, usiChannel:=1, usiPercent:=100);
bVarBOOL2:=Inst.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 119

SetMapBaseAdvance
PMCprimo-Command: BA (Set map base advance)

Function library: Mapping

Description:

With this function block an offset of the master position, set with a SetMapBaseOffset (see page
123) can be provided with a velocity dependent phase shifting.

map base advance =
256

speedmaster
 x

256
BA

The velocity of the master axis is indicated in increments/second, for example a phase shifting of
30 increments is the result with a velocity of 10.000 increments / second and a
SetMapBaseAdvance-value of 200.

The velocity of the master axis can be averaged temporally. For that the function and
SetMapBaseAdvanceTimeConstant exists with which the time for determination average velocity
can be set.

This factor can also be considered as set time. A value of 1 corresponds to 15,625 microseconds.
A phase shifting of 64 corresponds to 1 milliseconds and, therefore, the distance, the master
makes within this time.

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
uiPhase (UINT) The velocity dependent phase shifting from –65535 to 65535
As of Primo_V2_006.lib: diPhase (DINT)

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected function:

SetMapBaseOffset and SetMapBaseAdvanceTimeConstant

Factory setting: 0 (switched-off)

 14 Function library primo.lib

Page 120 User Manual PMCprimo SoftPLC

Examples:

Declaration:

INST: SetMapBaseAdvance;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, uiPhase:=64)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute:=bVarBOOL1, usiNode:=0, usiChannel:=1, uiPhase:=64);
bVarBOOL2:=Inst.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 121

SetMapBaseAdvanceTimeConstant
PMCprimo-Command: BT (Set base advance time constant)

Function library: Mapping

Description:

This function block is effective when using the module SetMapBaseAdvance. The value specifies
a period, during which PMCprimo determines the averaged velocity of the axis. This average
velocity uses PMCprimo instead of the actual velocity for calculating the phase shifting of a Offset
of the master position at the slave axis. PMCprimo does not determine any averaged velocity of
diValue=1.

The velocity brought to an average is also used in order to notice if the master drives with the
function ExecuteMap (see page 92).

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
uiValue (UINT) The time from 1 to 10.000 milliseconds

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected function:

SetMapBaseOffset and SetMapBaseAdvanceTimeConstant

Factory setting: 1 millisecond

 14 Function library primo.lib

Page 122 User Manual PMCprimo SoftPLC

Examples:

Declaration:

INST: SetMapBaseAdvanceTimeConstant;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, uiValue:=50)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute:=bVarBOOL1, usiNode:=0, usiChannel:=1, uiValue:=50);
bVarBOOL2:=Inst.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 123

SetMapBaseOffset
PMCprimo-Command: MB (Set map base offset for master map positions)

Function library: Mapping

Description:

This function block allows the introduction of an offset to influence the position allocation between
master and slave axis. The value is subtracted from the position of the master axis (it is the
resulting position when using a softwaredifferential). This effects a shifting of the position
allocation line. The position allocation line normally runs between the zero and final points. If the
value changes during a position allocation, an alignment is executed with the velocity defined over
the SetMapAdjustmentVelocity and the alignment acceleration SetAlignmentAcceleration (page
109).

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
diValue (DINT) Offset to be adjusted

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected function:

SetMapBaseOffset and SetMapBaseAdvanceTimeConstant

Factory setting: 0 (switched off)

 14 Function library primo.lib

Page 124 User Manual PMCprimo SoftPLC

Examples:

Declaration:

INST: SetMapBaseOffset;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, diValue:=3000)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute:=bVarBOOL1, usiNode:=0, usiChannel:=1, diValue:=3000);
bVarBOOL2:=Inst.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 125

SetMapLinkOptionsWord
PMCprimo-Command: LW (Set map link options word)

Function library: Mapping

Description:

With this function block the axle-coupling between the slave and master axes is adjusted. The
adjustment is executed on the slave axis and must be made before definition as slave axis with
the function MapLinkSlaveToMaster (page 104).

With the pre-adjustment axle-coupling the function Softwaredifferential can be released and
determined. With an active function the demand position is achieved from the sum or difference of
two master axes. The 2. master axis must be defined with the function block
MapLinkSlaveToDifferentialMaster (page 102). The function can released and determined with the
Bits 4 to 6.

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
usiControlword (USINT) Each Bit has the following meaning:

Bit 0: This Bit determines, if the slave axis shall follow the demand or actual values of the master
axis.

0: The slave axis follows the demand positions of the master axis.

1: The slave axis follows the actual positions of the master axis.

Bit 2: New function as of version 2.000
In speed mapping it is possible to restrict the slave velocity to a maximum (value of
SetVelocity) and a minimum (value of SetSlowSpeed). The bits 2 and 3 of
SetMapOptionsWord for definition of direction are active in this case.

0: Function speed limit is not active.

1: Function speed limit is active, if bit 4 of MW is set to 1

Bit 2: not occupied.

Bit 3: not occupied.

Bit 4: This Bit releases the function Softwaredifferential. The sum or the difference of two
independent master positions determine the demand position of the slave axis.

0: Function Softwaredifferential closed

1: Function Softwaredifferential released.

Bit 5: This Bit determines, if the demand position of the slave axis for the function
Softwaredifferential is the sum or difference of the Masterpositions.

0: The Masterposition are added.

1: The position of the 2. Master axis is subtracted from the 1. Master axis.

Bit 6: This Bit determines if the sign for the demand position of the slave axis is negated for the
function Softwaredifferential.

0: The polarity sign is not negated.

1: The polarity sign is negated.

Bit 7: not occupied.

 14 Function library primo.lib

Page 126 User Manual PMCprimo SoftPLC

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected function:

MapLinkSlaveToMaster and MapLinkSlaveToDifferentialMaster

Factory setting: 0

Examples:

Declaration:

INST: SetMapLinkOptionsWord;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, usiControlword:=2#101)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute:=bVarBOOL1, usiNode:=0, usiChannel:=1, usiControlword:=2#101);
bVarBOOL2:=Inst.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 127

SetMapOptionsWord
PMCprimo-Command: MW (Set map options word)

Function library: Mapping

Description:

With this function block the behaviour of the position allocations is preset at the slave axis:

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
usiControlword (USINT) Each Bit has the following meaning:

Bit 0: This Bit determines the behaviour of the slave axis when activating a position allocation.

0: Software clutch not active, i.e. the slave axis drives to the demand position assigned to
it when activating a position allocation.

1: Software clutch active, i.e. the slave axis waits until the master axis takes the
associated position, and afterwards accelerates to the required velocity within the set
time (SetClutchTime) in order to comply the position allocation.

Enhancement as of version 2.002:

With speed mapping (bit 4 of command “SetMapOptionsWord” must set) it is possible
now to go in mapping without software clutch. Therfore the velocity of master must be
lower than 500 increments per second.

Bit 1: This Bit determines if a necessary compensating movement (for example after introduction
of SetMapBaseOffset or SetSlaveMapOffset) is independent or dependent on the set
position bound. Example: The axis position is –10000 increments and the position bound is
10000 increments. In case of an input of SetMapBaseOffset+20000 there is a
compensating movement of 0 increments, when Bit 1 is set.

0: The position bound does not have any influence to a compensating movement.

1: The position bound is considered when executing a compensating movement. Always
the shorter compensating drive is selected.

Bit 2: This Bit determines, if the demand position is only driven in the direction selected by Bit 3
when activating a position allocation.

0: Direction for starting the demand position not defined.

1: Direction for starting the demand position can be defined with Bit 3.

Bit 3: This Bit determines the starting direction of the demand position when activating a position
allocation, in case Bit 2 is set to 1.

0: The correction movement is executed in a positive direction.

1: The correction movement is executed in a negative direction.

 14 Function library primo.lib

Page 128 User Manual PMCprimo SoftPLC

Bit 4: Selection between position allocation and velocity allocation. A velocity allocation is
meaningful, when the absolute position allocation is without meaning.

0: Position allocation

1: Velocity allocation

Enhancement as of version 2.002:

The master velocity can be averaged in speed mapping with the command
“SetMapBaseAdvanceTimeConstant”. Damping of rapid movements of the master is
possible with it.

Enhancement as of version 2.005:

Now it is possible to interrupt speed mapping with stop to position. In this case bit 6 of
command SetMapOptionsWord is ignored.

Bit 5: Coupling can be executed via a set time or via a set clutch length.

0: Coupling is executed with the set clutch time SetClutchTime (page 113)

1: Coupling is executed with the set clutch length SetClutchLength (page 111).#

Enhancement as of version 2.004:

When “StopMotor” is used the map is still active when decelerating. The setting of
“SetClutchLength” is always used. This means the bit 5 of “SetMapOptionsWord”
(SetClutchTime / SetClutchLength setting) is ignored because with “SetClutchTime” it is
not possible to reach the target position.

Bit 6: It is possible, to uncouple with MoveToAbsolutePosition or MoveRelativePosition. The
velocity can be selected for that.

0: It is driven with the actual slave velocity.

1: It is driven with the velocity set by SetVelocity (page 240).

Enhancement as of version 2.004:

Clutching out with StopMotor the map is done until stop if the bit is set. Only the clutch
length SetClutchLength is used, bit 5 of command SetMapOptionsWord has no relevance.

Bit 7: As of version 1.006a:
Activate an automatic bound correction. The slave bound is set automatic to the slave
position at the master bound and its scale map. The actual bound can be displayed with
function GetMappedMasterBound (page 96).
Enhancement as of version 2.000
If the axis is not moving in mapping an automatic bound correction is possible with this
command. Therefore the bound set by SB is multiplied with the scale map
(SetScaleMapping). With an odd gear transmission a reference sensor is no longer
necessary.
Example: SB4096; SM1,3
The bound for it is 1365,33. Therefore a drift of one increment every 3 bound would
happened. With correction the bound set two cycles to 1365 and one cycle to 1366

Special case:

In case Bit 0 and Bit 2 are set simultaneously, this defines the following behaviour:

The slave couples immediately. As a result a misalignment arises which is stored as Offset for
the slave. The misalignment can be compensated by SetSlaveMapOffset 0 later on.

Enhancement as of version 2.006:
If position mapping is set then the offset through the change of map ratio (SetScaleMapping) is
stored as Offset for the slave.

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 129

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError)

Connected functions:

MapLinkSlaveToMaster and MapLinkSlaveToDifferentialMaster

Factory setting: 0

 14 Function library primo.lib

Page 130 User Manual PMCprimo SoftPLC

Examples:

Declaration:

INST: SetMapOptionsWord;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, usiControlword:=2#101)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute:=bVarBOOL1, usiNode:=0, usiChannel:=1, usiControlword:=2#101);
bVarBOOL2:=Inst.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 131

SetMapPositionTimeout
PMCprimo-Command: MT (Masterposition timeout)

Function library: Mapping

Description:

If master values are transmitted in a linked system, it is executed in a cycle of 4 milliseconds. This
position is interpolated for the cycle time of one milliseconds. For monitoring the transfer of the
master position via the CANopen-network a monitoring time can be adjusted by this function
block. If the master values are not received within the adjusted time an error message is signalled
and the motor is switched-off.

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
uiValue (UINT) The time from 4 up to 10.000 milliseconds
 As of version 2.006 new range of values: 0 to 1000

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Factory setting: 4 milliseconds

Examples:

Declaration:

INST: SetMapPositionTimeout;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

 Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, uiValue:=6)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute:=bVarBOOL1, usiNode:=0, usiChannel:=1, uiValue:=6);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 132 User Manual PMCprimo SoftPLC

SetMapScaleFromBounds
PMCprimo-Command: BR (Set map scale factor from bounds ratio)

Function library: Mapping

Description:

With this function block the transmission ratio (SetScaleMapping page 136) can automatically be
calculated from the specified position bounds of the master and slave axes. The calculated
transmission ratio is equal to the value SetScaleMapping (slave)/SetScaleMapping (master).

Input variables:

bExecute (BOOL) The transmission ratio is calculated in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

SetScaleMapping

Examples:

Declaration:

INST: SetMapScaleFromBounds;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute:=bVarBOOL1, usiNode:=0, usiChannel:=1);
bVarBOOL2:=Inst.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 133

SetPositionBound
PMCprimo-Command: SB (Set position overflow bound)

Function library: Mapping

Description:

This function block defines a position bound as limitation of the absolute position, i.e. if the motor
position exceeds the adjusted position bound, the adjusted value is subtracted from the absolute
value of the position counter.

The limitation of the absolute position is mostly identically adjusted with the reference position.
This facilitates the continuous monitoring of the reference signals and the execution of the
necessary corrections resulting from them.

Each complete position bound (limit value exceeding) is counted in an overflow counter. This
counter can be cancelled or set with the function SetPositionOverflowCounter (page 135).

A typical application for the usage of position bounds is a cyclic or rotating movement where only
the position within one rotation or cycle is important. Position indications outside of the selected
position bound with travelling commands are possible at any time, however, the actual position
can never be bigger than the position bound (subtraction of the adjusted value from the position
counter). The overflow counter includes the number of the completely driven cycles.

Illustration 18: position bound

 14 Function library primo.lib

Page 134 User Manual PMCprimo SoftPLC

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
udiValue (UDINT) The position bound from 1 to 4.000.000 increments
 As of version 2.004 new range : 1 to 2.000.000.000

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

SetPositionOverflowCounter

Factory setting: 4.000.000 increments
As of version 2.005 new Factory setting: 4.194.304
This helps to avoid problems with absolute encoders because therefore the bound must have a
value of 2n.

Examples:

Declaration:

INST: SetPositionBound;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, udiValue := 4096)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute:=bVarBOOL1, usiNode:=0, usiChannel:=1, udiValue := 4096);
bVarBOOL2:=Inst.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 135

SetPositionOverflowCounter
PMCprimo-Command: BC (Set position overflow counter)

Function library: Mapping

Description:

This function block locates the overflow counter to the specified value. The overflow counter
counts the exceeding of the position bounds. The counting value is incremented in case of
exceeding in positive and decremented when exceeding the cycle limitation in negative direction.

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
diCounter (DINT) The count of a counter

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected function:
SetPositionCounter

Factory setting: 0

Examples:

Declaration:

INST: SetPositionOverflowCounter;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, diCounter := 0)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute:=bVarBOOL1, usiNode:=0, usiChannel:=1, diCounter := 0);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 136 User Manual PMCprimo SoftPLC

SetScaleMapping
PMCprimo-Command: SM (Scale mapping)

Function library: Mapping

Description:

With this function block the transmission ratio can be adjusted between the master and slave
axes. The adjustment of the transmission ratio is executed at the slave axis. The absolute Slave-
Position is multiplied with the counter and divided with the denominator. In case the transmission
ratio changes with an active position allocation, the velocity for the equation with the parameter
SetMapAdjustmentVelocity (page 117) and the acceleration with the value of the parameter
SetAlignmentAcceleration (page 109) is determined in case of the change-over of the position at
the slave axis.

Example: transmission ratio 1096/361

⇒ The actual demand position of the slave axis is the demand position from the position
allocation multiplied with the factor 1096/361.

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
uiCounter (UINT) The counter 0 up to 65535
 As of version 2.005 new Factory setting: 400.000
uiDivider (UINT) The denominator 1 up to 65535
 As of version 2.005 new Factory setting: 400.000

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

SetMapAdjustmentVelocity and SetAlignmentAcceleration

Factory setting: counter 1, denominator 1

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 137

Examples:

Declaration:

INST: SetScaleMapping;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode :=0, usiChannel :=1, uiCounter :=1, uiDivider :=2)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute:=bVarBOOL1, usiNode:=0, usiChannel:=1, diCounter := 0, uiDivider :=2);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 138 User Manual PMCprimo SoftPLC

SetSlaveMapOffset
PMCprimo-Command: MF (Set slave map position offset)

Function library: Mapping

Description:

This function block allows the introduction of an offset for influencing the position between master
and slave axes. The value is added to the demand position of the slave axis allowing a shift of the
position allocation line relative to the position of the master axis. The position allocation line
normally runs between the zero and final points. If the value changes during a position allocation
an alignment with the velocity defined via the function SetMapAdjustmentVelocity and the
alignment acceleration SetAlignmentAcceleration (page 109) is executed.

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
diValue (DINT) The Offset to be adjusted +/- 4.000.000

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

SetMapAdjustmentVelocity and SetAlignmentAcceleration

Factory setting: 0 (switched off)

Examples:

Declaration:

INST: SetSlaveMapOffset;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, diValue := 1)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute:=bVarBOOL1, usiNode:=0, usiChannel:=1, diValue := 1);
bVarBOOL2:=Inst.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 139

TransferMapData
PMCprimo-Command: TM (Transfer map data)

Function library: Mapping

Description:

With this function block a prepared position table is transferred from the Host to the selected axis.

The position table itself is transferred in the flash of the Host and must be transferred to the axis
again if required. This is the case for example, if it is calculated from the Mapgenerator a new.

Input variables:

bExecute (BOOL) The position table is transmitted in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
sMapname (STRING) The name of the Map

Output variables:

bDone (BOOL) Table transmitted (True) or it is not finalised (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

ExecuteMap

Examples:

Declaration:

INST: TransferMapData;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, sMapname := ‘Name’)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute:=bVarBOOL1, usiNode:=0, usiChannel:=1, sMapname := ‘Name’);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 140 User Manual PMCprimo SoftPLC

UnlinkSlaveToMaster
PMCprimo-Command: UL (Unlink slave axis from master axis)

Function library: Mapping

Description:

With this function block the instantaneous slave axis becomes a single axis again. The definition
of a slave axis must be cancelled, before the axis is allocated to another master axis.

Input variables:

bExecute (BOOL) The definition is cancelled in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)

Output variables:

bDone (BOOL) Definition cancelled (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

MapLinkSlaveToMaster and MapLinkSlaveToDifferentialMaster

Examples:

Declaration:

INST: UnlinkSlaveToMaster;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute:=bVarBOOL1, usiNode:=0, usiChannel:=1);
bVarBOOL2:=Inst.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 141

14.12 Output

DefineAnalogueLimitErrorOutput
PMCprimo-Command: AE (Define analogue limit error output)

Function library: Output

Description:

This function block defines a digital output of PMCprimo as error output. If the value of the
analogue input exceeds one of the adjusted limit value, the error output changes its logical
condition. The logical condition of the output is in case of an error this one, which has been
specified with the sign ±. If the value of the analogue input returns to the permissible range, the
status of the error output changes back again.

Input variables:

bExecute (BOOL) The output is defined in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
usiBank (USINT) 1 to 4 (3 and 4 is virtual)

usiOutput (USINT) The output number from 1 to 8
usiPolarity (USINT) The polarity 0 positive 1 negative

Output variables:

bDone (BOOL) Output has been defined (True) or definition is still under operation
 (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

SetAnalogueInputHighLimit and SetAnalogueInputLowLimit

The function block UndefineOutput is available for cancellation of the output definition.

Factory setting: no output defined

 14 Function library primo.lib

Page 142 User Manual PMCprimo SoftPLC

Examples

Declaration:

INST: DefineAnalogueLimitErrorOutput;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, usiBank := 1
 , usiOutput := 5, usiPolarity := 0)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute:=bVarBOOL1, usiNode:=0, usiChannel:=1, usiBank := 1
 , usiOutput := 5, usiPolarity := 0);
bVarBOOL2:=Inst.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 143

DefineBoundOverflowOutput
PMCprimo-Command: BO (Define bound overflow output)

Function library: Output

Description:

With this function block a pulse output can be activated in case of exceeding the position bound. If
the selected axis exceeds the cycle limit, PMCprimo gives a pulse of 1ms to the defined output.

Input variables:

bExecute (BOOL) The output is defined in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
usiBank (USINT) 1 to 4 (3 and 4 is virtual)

usiOutput (USINT) The output number from 1 to 8
usiPolarity (USINT) The polarity 0 positive 1 negative

Output variables:

bDone (BOOL) Output has been defined (True) or definition is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

SetPositionBound

The function block UndefineOutput is available for cancelling the output definition.

Factory setting: No output defined

 14 Function library primo.lib

Page 144 User Manual PMCprimo SoftPLC

Examples:

Declaration:

INST: DefineBoundOverflowOutput;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, usiBank := 1
 , usiOutput := 5, usiPolarity := 0)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute:=bVarBOOL1, usiNode:=0, usiChannel:=1, usiBank := 1
 , usiOutput := 5, usiPolarity := 0);
bVarBOOL2:=Inst.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 145

DefineMotorErrorOutput
PMCprimo-Command: DE (Define error output)

Function library: Output

Description:

With this function block a digital output can be defined as error output. The specified output directs
the specified signal level, if PMCprimo has detected an axis error (motor OFF). In case the
position control loop is closed again (function block EnablePositionControl) the error output is
reset.

In case of the following errors PMCprimo changes the signal level at a defined error output:

• Following error detected (SetMaxPositionError)

• Monitoring time encoder signals exceeded (SetEncoderTimeout)

• Motor position outside the software limts (SetHighPositionLimit and
SetLowPositionLimit)

• Errors, which can be released with SetErrorOptionsWord to an axis error

Input variables:

bExecute (BOOL) The output is defined in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
usiBank (USINT) 1 to 4 (3 and 4 is virtual)

usiOutput (USINT) The output number from 1 to 8
usiPolarity (USINT) The polarity 0 positive 1 negative

Output variables:

bDone (BOOL) Output has been defined (True) or definition is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

SetMaxPositionError, SetEncoderTimeout, SetHighPositionLimit, SetLowPositionLimit and
SetErrorOptionsWord

The function block UndefineOutput is available for cancelling the output definition.

Factory setting: No output defined

 14 Function library primo.lib

Page 146 User Manual PMCprimo SoftPLC

Examples

Declaration:

INST: DefineMotorErrorOutput;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, usiBank := 1
 , usiOutput := 5, usiPolarity := 0)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute:=bVarBOOL1, usiNode:=0, usiChannel:=1, usiBank := 1
 , usiOutput := 5, usiPolarity := 0);
bVarBOOL2:=Inst.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 147

DefineOutsideWindowOutput
PMCprimo-Command: OW (Define outside window output)

Function library: Output

Description:

This function block defines an output for watching position error. If the position error is bigger than
SetWindow (page 200) the output is set/ reset. A line which has been defined as an outside
window output may be returned to normal operation by entering this command without the sign.

Input variables:

bExecute (BOOL) The output is defined in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
usiBank (USINT) 1 to 4 (3 and 4 is virtual)

usiOutput (USINT) The output number from 1 to 8
usiPolarity (USINT) The polarity 0 positive 1 negative

Output variables:

bDone (BOOL) Output has been defined (True) or definition is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

SetMaxPositionError, SetEncoderTimeout, SetHighPositionLimit, SetLowPositionLimit and
SetErrorOptionsWord

The function block UndefineOutput is available for cancelling the output definition.

Factory setting: No output defined

 14 Function library primo.lib

Page 148 User Manual PMCprimo SoftPLC

Examples

Declaration:

INST: DefineOutsideWindowOutput;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, usiBank := 1
 , usiOutput := 5, usiPolarity := 0)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute:=bVarBOOL1, usiNode:=0, usiChannel:=1, usiBank := 1
 , usiOutput := 5, usiPolarity := 0);
bVarBOOL2:=Inst.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 149

DefinePositionTriggerOutput
PMCprimo-Command: PO (Define position trigger output)

Function library: Output

Description:

With this function block a digital output can be defined as electronic cam. The specified output
directs specified signal levels within the position range specified according to the sign.

If SetPositionBound is set to 1000 and a position trigger output is defined between 0 and –200 for
example and it is moved with constant velocity in negative direction, there are different behaviour
with different versions:

The output and the axis must be on the same network participant.

Input variables:

bExecute (BOOL) The output is defined in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
usiBank (USINT) 1 to 4 (3 and 4 is virtual)

usiOutput (USINT) The output number from 1 to 8
usiPolarity (USINT) The polarity 0 positive 1 negative
diPostion1 (DINT) The initial position (+/- 4.000.000)
diPostion2 (DINT) The final position (+/- 4.000.000)

Output variables:

bDone (BOOL) Output has been defined (True) or definition is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

SetPositionBound, SetPositionOutputHysteresis and SetPhaseAdvanceFactor

The function block UndefineOutput is available for cancelling the output definition.

Factory setting: No output defined

 14 Function library primo.lib

Page 150 User Manual PMCprimo SoftPLC

Examples:

Declaration:

INST: DefineMotorErrorOutput;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, usiBank := 1
 , usiOutput := 5, usiPolarity := 0, diPosition1 := 0, diPosition2 := 1000)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute:=bVarBOOL1, usiNode:=0, usiChannel:=1, usiBank := 1
 , usiOutput := 5, usiPolarity := 0, diPosition1 := 0, diPosition2 := 1000);
bVarBOOL2:=Inst.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 151

DefineReferenceAcceptedOutput
PMCprimo-Command: RA (Define reference accepted output)

Function library: Output

Description:

With this function block a pulse output can be activated when recognising a valid reference input
signal. If PMCprimo recognises the signal of a reference input as valid, PMCprimo gives a pulse of
1ms to the defined output. The polarity indicates the signal level of the output with the pulse
output. This function can be used for example, to recognise products as ok, if the function blocks
SetReferenceFalseHighLimit, SetReferenceFalseLowLimit, SetReferenceTrueHighLimit and
SetReferenceTrueLowLimit (page 266) are used.

The pulse output is also executed during initialisation with InitialisePosition and
InitialisePositionBounds.

Input variables:

bExecute (BOOL) The output is defined in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
usiBank (USINT) 1 to 4 (3 and 4 is virtual)

usiOutput (USINT) The output number from 1 to 8
usiPolarity (USINT) The polarity 0 positive 1 negative

Output variables:

bDone (BOOL) Output has been defined (True) or definition is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected function:

SetReferenceMode and DefineReferenceInput

The function block UndefineOutput is available for cancellation of the output definition.

Factory setting: no output defined

 14 Function library primo.lib

Page 152 User Manual PMCprimo SoftPLC

Examples:

Declaration:

INST: DefineReferenceAcceptOutput;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, usiBank := 1
 , usiOutput := 5, usiPolarity := 0)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute:=bVarBOOL1, usiNode:=0, usiChannel:=1, usiBank := 1
 , usiOutput := 5, usiPolarity := 0);
bVarBOOL2:=Inst.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 153

DefineReferenceBackwardOutput
PMCprimo-Command: JB (Reference adjustment backwards output)

Function library: Output

Description:

With this function block an output can be set for the time, for which a reference error correction is
executed against the driving direction. This means that the axis must get slower in case of a
reference error correction, so that the defined output is set to “true”.

Input variables:

bExecute (BOOL) The output is defined in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
usiBank (USINT) 1 to 4 (3 and 4 is virtual)
 1 to 20, adjustable with CD command (PMCprimo 16+)
 1 to 10, adjustable with CD command (PMCprimo Drive2)

usiOutput (USINT) The output number from 1 to 8
usiPolarity (USINT) The polarity 0 positive 1 negative

Output variables:

bDone (BOOL) Output has been defined (True) or definition is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected function:

SetReferenceMode, DefineReferenceForwardOutput, DefineReferenceOutput and
DefineReferenceInput

The function block UndefineOutput is available for cancellation of the output definition.

Factory setting: no output defined

 14 Function library primo.lib

Page 154 User Manual PMCprimo SoftPLC

Examples:

Declaration:

INST: DefineReferenceBackwardOutput;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, usiBank := 1
 , usiOutput := 5, usiPolarity := 0)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute:=bVarBOOL1, usiNode:=0, usiChannel:=1, usiBank := 1
 , usiOutput := 5, usiPolarity := 0);
bVarBOOL2:=Inst.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 155

DefineReferenceForwardOutput
PMCprimo-Command: JF (Reference adjustment forwards output)

Function library: Output

Description:

With this function block an output can be set for the time, for which a reference error correction is
executed in the driving direction. This means that the axis must get faster in case of a reference
error correction, so that the defined output is set to “true”.

Input variables:

bExecute (BOOL) The output is defined in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
usiBank (USINT) 1 to 4 (3 and 4 is virtual)
 1 to 20, adjustable with CD command (PMCprimo 16+)
 1 to 10, adjustable with CD command (PMCprimo Drive2)

usiOutput (USINT) The output number from 1 to 8
usiPolarity (USINT) The polarity 0 positive 1 negative

Output variables:

bDone (BOOL) Output has been defined (True) or definition is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected function:

SetReferenceMode, DefineReferenceBackwardOutput, DefineReferenceOutput and
DefineReferenceInput

The function block UndefineOutput is available for cancellation of the output definition.

Factory setting: no output defined

 14 Function library primo.lib

Page 156 User Manual PMCprimo SoftPLC

Examples:

Declaration:

INST: DefineReferenceForwardOutput;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, usiBank := 1
 , usiOutput := 5, usiPolarity := 0)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute:=bVarBOOL1, usiNode:=0, usiChannel:=1, usiBank := 1
 , usiOutput := 5, usiPolarity := 0);
bVarBOOL2:=Inst.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 157

DefineReferenceOutput
PMCprimo-Command: OR (Set reference adjustment output)

Function library: Output

Description:

With this function block an output can be set for the time to “true”, for which a reference error
correction is executed. With the function blocks DefineReferenceBackwardOutput and
DefineReferenceForwardOutput an output for a certain correcting direction is defined. With this
function block an output signal is executed in both correcting directions.

Change as of version 1.008a:

The output is set for 1 millisecond to 1, also the reference error is 0. In older versions the output
was not set in this case.

Input variables:

bExecute (BOOL) The output is defined in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
usiBank (USINT) 1 to 4 (3 and 4 is virtual)

usiOutput (USINT) The output number from 1 to 8
usiPolarity (USINT) The polarity 0 positive 1 negative

Output variables:

bDone (BOOL) Output has been defined (True) or definition is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected function:

SetReferenceMode, DefineReferenceBackwardOutput, DefineReferenceForwardOutput and
DefineReferenceInput

The function block UndefineOutput is available for cancellation of the output definition.

Factory setting: no output defined

 14 Function library primo.lib

Page 158 User Manual PMCprimo SoftPLC

Examples:

Declaration:

INST: DefineReferenceOutput;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, usiBank := 1
 , usiOutput := 5, usiPolarity := 0)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute:=bVarBOOL1, usiNode:=0, usiChannel:=1, usiBank := 1
 , usiOutput := 5, usiPolarity := 0);
bVarBOOL2:=Inst.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 159

DefineReferenceRejectOutput
PMCprimo-Command: RR (Define reference reject output)

Function library: Output

Description:

With this function block a digital output can be defined as reference error output. A reference error
is measured with each reference signal. The measured reference error is compared with the value
of SetMaxReferenceCorrection. In case the measured reference error is within the specified limits,
the reference error output is set as incorrectly. In the contrary case when the measured reference
error exceeds the specified limits, the reference error output is set as true. The signal level of the
reference error output is specified with the argument polarity. The signal level is kept so long, until
a new comparison was executed with the next reference signal.

A typical application for this function is, for example, the control of a distribution point which
distinguishes between good and worse elements. For example, the front edge of elements lying
on a conveyer belt is measured with a photo cell. The measured value in connection with the
value of SetMaxReferenceCorrection can be used for the control of a distribution point to
disconnect good and worse elements.

Input variables:

bExecute (BOOL) The output is defined in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
usiBank (USINT) 1 to 4 (3 and 4 is virtual)

usiOutput (USINT) The output number from 1 to 8
usiPolarity (USINT) The polarity 0 positive 1 negative

Output variables:

bDone (BOOL) Output has been defined (True) or definition is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected function:

SetReferenceMode and DefineReferenceInput

The function block UndefineOutput is available for cancellation of the output definition.

Factory setting: no output defined

 14 Function library primo.lib

Page 160 User Manual PMCprimo SoftPLC

Examples:

Declaration:

INST: DefineReferenceRejectOutput;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, usiBank := 1
 , usiOutput := 5, usiPolarity := 0)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute:=bVarBOOL1, usiNode:=0, usiChannel:=1, usiBank := 1
 , usiOutput := 5, usiPolarity := 0);
bVarBOOL2:=Inst.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 161

DefineTimerOutput
PMCprimo-command: TC (Define timer/counter output)

Function library: Output

This function is available since Version 2.005.

Description:

With this command it is possible to define a digital output for timer or counter function. If for
example a bound overflow output is defined it is possible extend the implulse with
“DefineTimerOutput”, in order CoDeSys can detect it certainly.

The timer/counter can only be triggerd from PMCprimo.

The timer/counter mode values are as follows:

The output line is set true (as defined with usiPolarity) when the timer/counter is first triggered,
and it is reset false when the timer/counter reaches its final value, set by the count parameter.

In all counter modes, the counter is incremented or decremented when either the output is set or
reset by PMCprimo. If it is an up counter, its initial value is zero, and its final value is given by the
count parameter. If it is a down counter, its initial value is the count parameter, and its final value
is zero. On the first count, the output line is set to true, and the counter is started and set to its
initial value. When the count is incremented or decremented to its final value, the output line is
reset false, and the counter is stopped and reset to its initial value. The counter can only activated

Mode Operation

0 One-shot up counter

1 Cyclic up counter

2 One-shot down counter

3 Cyclic down counter

4 One-shot timer

5 Cyclic timer

6 One-Shot-Timer with restart

7 Reserved

8 Reserved

 14 Function library primo.lib

Page 162 User Manual PMCprimo SoftPLC

by a outputdefinition of PMCprimo.

In timer modes the timer is triggered in the same way as in counter mode, but once triggered it
counts once per tick until the final count is reached. The output line is set true when the timer is
triggered, and is reset false when the timer reaches the final count.

In one-shot modes, the timer/counter behaves as described above. In cyclic modes it operates in
a slightly different way. When the timer counter reaches its final count, the output line is toggled to
its opposite state, the counter/timer is reset to its initial value and continues to run. The output line
changes state each time the counter/timer reaches its final count.

Input variables:

bExecute (BOOL) The output is defined in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiBank (USINT) 1 to 4 (3 and 4 is virtual)

usiOutput (USINT) The output number from 1 to 8
usiPolarity (USINT) The polarity 0 positive 1 negative
diValue (DINT) Value for timerfunction 0 bis 65535
usiModus (USINT) Modus of Timerfunction (see above)

Output variables:

bDone (BOOL) Output has been defined (True) or definition is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected function:

DefineBoundOverflowOutput and DefinePositionTriggerOutput

The function block UndefineOutput is available for cancellation of the output definition.

Factory setting: no timer defined

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 163

Example:

Declaration:

INST: DefineTimerOutput;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in AWL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, , usiBank := 1, usiOutput := 5
 , usiPolarity := 0, diValue :=20, usiModus :=4)
LD INST.bDone
ST bVarBOOL2

Example Beispiel in ST:

NST(bExecute := bVarBOOL1, usiNode := 0, , usiBank := 1, usiOutput := 5
 , usiPolarity := 0, diValue :=20, usiModus :=4);
bVarBOOL2:=Inst.bDone;

Example in FUP:

 14 Function library primo.lib

Page 164 User Manual PMCprimo SoftPLC

DefineVelocityOutput
PMCprimo-Command: VO (Define velocity trigger output)

Function library: Output

Description:

With this function block a digital output can be set dependent on the momentary velocity of an
axis. The specified output directs the specified signal level within the velocity range specified
according to the sign. With the function block SetVelocityOutputHysteresis a hysteresis can be
set, so that the output does not switch constantly, if the actual velocity varies by the switch
thresholds.

Input variables:

bExecute (BOOL) The output is defined in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
usiBank (USINT) 1 to 4 (3 and 4 is virtual)

usiOutput (USINT) The output number from 1 to 8
usiPolarity (USINT) The polarity 0 positive 1 negative
diSpeed1 (DINT) The initial speed of the range
diSpeed2 (DINT) The final speed of the range

Output variables:

bDone (BOOL) Output has been defined (True) or definition is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected function:

SetVelocityOutputHysteresis

The function block UndefineOutput is available for cancellation of the output definition.

Factory setting: no output defined

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 165

Examples:

Declaration:

INST: DefineVelocityOutput;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, usiBank := 1
 , usiOutput := 5, usiPolarity := 0, diSpeed1 := 20000, diSpeed2 := 30000)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute:=bVarBOOL1, usiNode:=0, usiChannel:=1, usiBank := 1
 , usiOutput := 5, usiPolarity := 0, diSpeed1 := 20000, diSpeed2 := 30000);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 166 User Manual PMCprimo SoftPLC

SetPhaseAdvanceFactor
PMCprimo-Command: PA (Set phase advance scale factor)

Function library: Output

Description:

With this function block an electronic cam of an axis can be provided with a phase shifting
depending on the velocity. This phase shifting can be arranged separately for each output.

Phase shifting output = (velocity/256) x (PA/256)

The velocity of the axis is indicated in increments/second, for example a phase shifting of 153
increments is obtained with a velocity of 20.000 increments/seconds and a value of 500.

This factor can also be considered as set time. A value of 1 corresponds to 15,625 microseconds.
A phase shifting of 64, therefore, corresponds to 1 millisecond and, therefore, to the way, this axis
moves in this time. Is the delay in time, for example of the connected valve, known, the factor can
be calculated quite easily.

For the calculation the averaging actual velocity is used. The time base can be set with the
function block SetVelocityAveragingTime.

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 167

Electric cam without speed depending phase shift:

Electric cam with speed depending phase shift at a speed of v = 1000 inc/s and a phase shift
SetPhaseAdvanceFactor = 2560:

Electric cam with speed depending phase shift at a speed of v = 5000 inc/s and a phase shift
SetPhaseAdvanceFactor = 2560:

Illustration 19: Speed depending phase shift

 14 Function library primo.lib

Page 168 User Manual PMCprimo SoftPLC

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
usiBank (USINT) 1 to 4 (3 and 4 is virtual)

usiOutput (USINT) The output number from 1 to 8
usiPolarity (USINT) The polarity 0 positive 1 negative

Output variables:

bDone (BOOL) Output has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected function:

DefinePositionTriggerOutput and SetVelocityAveragingTime

Factory setting: 0 (switched-off)

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 169

Examples

Declaration:

INST: SetPhaseAdvanceFactor;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, usiBank := 1
 , usiOutput := 5, usiPolarity := 0)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute:=bVarBOOL1, usiNode:=0, usiChannel:=1, usiBank := 1
 , usiOutput := 5, usiPolarity := 0);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 170 User Manual PMCprimo SoftPLC

SetPositionOutputHysteresis
PMCprimo-Command: PH (Position Output Hysteresis)

Function library: Output

Description:

This function block can be used for an extension of the function block
DefinePositionTriggerOutput. A hysteresis is added to the switching points, hence the output is
not constantly switched on and off during stoppage, if for example the actual position varies by 1
increment. The set value is either added to the cam position or subtracted from it.

The value can be used for all outputs on this axis.

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
uiValue (UINT) The hysteresis for all cams on this axis
Ab Primo_V2_006.lib: udiValue (UDINT)

Output variables:

bDone (BOOL) Output has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected function:

DefinePositionTriggerOutput

Factory setting: 0 (switched off)

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 171

Examples:

Declaration:

INST: SetPositionOutputHysteresis;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, uiValue := 1)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute:=bVarBOOL1, usiNode:=0, usiChannel:=1, uiValue := 1);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 172 User Manual PMCprimo SoftPLC

SetVelocityOutputHysteresis
PMCprimo-Command: VH (Velocity Output Hysteresis)

Function library: Output

Description:

This function block is used for an extension of the function block DefineVelocityOutput. A
hysteresis is added to the switching points, hence the output is not constantly switched on and off.
The set value is either added to the set switching points of the velocity or subtracted from them.

The value is used for all outputs of the axis.

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
uiValue (UINT) The hysteresis for all velocity outputs on this axis
As of Primo_V2_006.lib: udiValue (UDINT)

Output variables:

bDone (BOOL) Output has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected function:

DefineVelocityOutput

Factory setting: 0 (switched-off)

Examples:

Declaration:

INST: SetVelocityOutputHysteresis;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, uiValue := 1)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute:=bVarBOOL1, usiNode:=0, usiChannel:=1, uiValue := 1);
bVarBOOL2:=Inst.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 173

UndefineOutput
PMCprimo-Command: UO (Undefine output definition)

Function library: Output

Description:

With this function block the user cancels a defined output function in PMCprimo independent
which function was defined before.

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
usiBank (USINT) 1 to 2, PMCprimo Drive/2, (2 is virtual)
 1 to 3, PMCprimo 2+2, (3 is virtual)
 1 to 3 (PMCprimo 16+) (3 is virtual)

usiOutput (USINT) The output number from 1 to 8

Output variables:

bDone (BOOL) Definition was cancelled (True) or function block is still under
 operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected function:

DefineAnalogueLimitErrorOutput, DefineAuxiliaryOutput, DefineBoundOverflowOutput,
DefineMotorErrorOutput, DefinePositionTriggerOutput, DefineReferenceAcceptedOutput,
DefineReferenceBackwardOutput, DefineReferenceForwardOutput, DefineReferenceOutput,
DefineReferenceRejectOutput und DefineVelocityOutput

 14 Function library primo.lib

Page 174 User Manual PMCprimo SoftPLC

Examples:

Declaration:

INST: UndefineOutput;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiBank := 1, usiOutput := 5)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiBank := 1, usiOutput := 5);
bVarBOOL2:=Inst.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 175

14.13 Positioncontrol

The drive is operated with all position processes in a position control. In case there are deviations
between an actual position and the constant or consecutive setpoint positions, these ones are
reduced by the position controller.

Control algorithm:

PMCprimo includes a PID-position controller with reverse, velocity and acceleration pre-control
factors:

VDemand = KP ei + KI Σei + KD (ei-ei-1) + KV (pi-pi-1) + KF(di-di-1) + KA[(di-di-1) - (di-1-di-2)]

KP = proportional gain constant
KI = integral gain constant
KD = differential gain constant
KV = velocity feedback gain constant
KF = velocity feed-forward gain constant
KA = acceleration feed-forward gain constant
ei = position error (= demand position - measured position)
di = demand position
pi = measured position

The dynamic behaviour of the drive depends on these constant factors and on the mechanical
behaviour of the driven machines. The setting of these factors is essential for obtaining an
optimum control behaviour.

The following connection between the following error and setpoint issue is valid:

VSoll = error * KP/256 * 10/2048

PMCprimo offers additional functions for tuning the control loop. At the analogue output (e.g.
master axis is not position controlled) different information can be shown at an oscilloscope or at
another recording unit

Block circuit diagram of the position control:

KA

KF

KP

KI

KD

-KV

Controller Motor
demand position

measured position

 1
256

 1
256

Encoder

dx
dt

dx
dt

dx
dt

dx
dt

dx
dt

position error

 14 Function library primo.lib

Page 176 User Manual PMCprimo SoftPLC

EnablePositionControl
PMCprimo-Command: PC (Enter position control mode)

Function library: Positioncontrol

Description:

This function block activates the position control of the motor.

In case of an active position control loop a relay per axis is controlled with the PMCprimo 2+2 with
which the control unit is released for the drive.

The position control is deactivated in case of a motor error. The active position control signals
PMCprimo with the sign „ > “ at the serial interface or at the LED Display (signal see installation
manual).

Input variables:

bExecute (BOOL) The position control is activated in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)

Output variables:

bDone (BOOL) Position control is active (True) or module is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected function::

MotorOff und GlobalOff

Factory setting: Release switched-off

Examples:

Declaration:

INST: EnablePositionControl;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1,
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1);
bVarBOOL2:=Inst.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 177

GlobalOff
PMCprimo-Command: GF (Global motor off)

Function library: Positioncontrol

Description:

All motors are switched-off. This function block is an all axis global MotorOff (page 177)

Input variables:

bExecute (BOOL) All axes are switched off in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0

Output variables:

bDone (BOOL) All motors are switched-off (True) or module is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected function:

MotorOff

Examples:

Declaration:

INST: GlobalOff;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 178 User Manual PMCprimo SoftPLC

GlobalStop
PMCprimo-Command: GS (Global stop)

Function library: Positioncontrol

Description:

All axes decelerate with their corresponding ramp given by SetDeceleration. This function block is
an all axes global StopMotor -Function (page 242).

Input variables:

bExecute (BOOL) All axes are stopped in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0

Output variables:

bDone (BOOL) All axes are stopped (True) or module is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected function

StopMotor

Examples:

Declaration:

INST: GlobalStop;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1);
bVarBOOL2:=Inst.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 179

InitialiseDemandOffset
PMCprimo-Command: ID (Initialise Demand Offset)

Function library: Positioncontrol

As of version 2.004 available

Description:

Under normal conditions, there may be some constant offset in the demand signal analogue
output amplifiers which causes the motor to settle at a position slightly different to the required
position. The “InitialiseDemandOffset” command sets the system up to correct for this (assumed
constant) offset in all subsequent position control operations. It must be used every time the
system is powered on, when the system is in the position control mode, to set the actual position
as close as possible to the required position. This is particularly necessary when the final position
outside the final position window, and at the end of a move command it returns the error message
.failed to reach target position. The “InitialiseDemandOffset” command actually controlling the
position, and it has no effect if the motor is not driving the system. Note that friction in the
mechanical system can also cause a position offset after a move command is executed.

bExecute (BOOL) The function is started in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)

Output variables:

bDone (BOOL) Motor is switched off (True) or module is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Examples:

Declaration:

INST: InitialiseDemandOffset;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 180 User Manual PMCprimo SoftPLC

MotorOff
PMCprimo-Command: MO (Motor off)

Function library: Positioncontrol

Description:

This function block switches off the controller release. All other functions remain active, the
encoder signals are evaluated. In case the controller release is re-activated, the motor remains in
the instantaneous position.

In case of an open position control loop the setpoint signal is damped with 0V with the
PMCprimo 2+2/16+ and the relay of the axis opens. This relay should be used as controller or
drive release. The relay simultaneously damps the setpoint output with 0V. In case the motor
controller is locked with the relay, the motor coasts freely.
This function can also be used as alternative Stop-Command. With the function GlobalOff (see
page 177) the function MotorOff can be executed at all axes at the same time.
Input variables:

bExecute (BOOL) The motor is switched off in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)

Output variables:

bDone (BOOL) Motor is switched off (True) or module is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected function

MotorOff und GlobalOff

Examples:

Declaration:

INST: MotorOff;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1);
bVarBOOL2:=Inst.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 181

SetAccelerationFeedForwardGain
PMCprimo-Command: KA (Set acceleration feed-forward gain constant)

Function library: Positioncontrol

Description:

With this function block the acceleration factor of the control loop algorithm is set. The factor uses
the set acceleration contrary to the actual acceleration and helps if the axis is driven with a very
high acceleration. The following error can be minimised in the acceleration phase by the aid of the
factor.

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
uiGain (UINT) The control factor from 0 to 65535

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected function

SetProportionalGain,SetDifferentialGain, SetIntegralGain, SetVelocityFeedbackGain und
SetVelocityFeedForwardGain

Factory setting: 0 (switched off)

Examples:

Declaration:

INST: SetAccelerationFeedForwardGain;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, uiGain := 1)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, uiGain := 1);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 182 User Manual PMCprimo SoftPLC

SetControlWord
PMCprimo-Command: CW (Set control word)

Function library: Positioncontrol

Description:

With this function block the user can determine the counting direction of the encoder, the velocity
curve for moving commands and the sign of the setpoint output of each axis (Bit 0 stands with
inputs and outputs on the right and Bit 7 on the left).

Attention: The counting direction of the encoder and the sign of the setpoint output should only
be modified with an open position control loop. This inverting functions are used for simplification
of the initial start-up of the motor (saves rewiring) and allows an adaptation of the direction of
motion of PMCprimo to the definition of the direction of motion of the user.

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axle number from 1 to n (depending on the system)
usiControlword (USINT) The control word with following meaning.

Bit 0: Program abort with a motor error:

0: Axle programs which wait for an execution of a moving command are stopped.

1: Axle programs are not stopped due to motor errors.

Bit 1: Storing of positions in the battery backed SRAM. This function is only available in the
 PMCprimo 2+2/16+.

0: Positions are not stored in SRAM.

1: Actual position is permanently kept in SRAM. This Bit cannot be stored. If the last
position shall be read in by SRAM after switching-on, the Bit must be set in the start-up
program. The data are reflected in SRAM and checked after switching-on. In case of a
failure an error message is signalled axle specific.

Attention: This bit may only set, when all commands affecting the position are set
(command “SetFeedbackEncoder“, “SetNumberOfBits“, “SetEncoderScaling“,
“SetPositionBound“). If the bit is set too early, then the position in the ram may be wrong.

Enhancement as of version 2.004:
If a motor is moved to a negative position and then PMCprimo is switched off and on then
the position is calculated to a negative position. In former versions the position was
calculated to a positive position. It is important that the motor is not moved more than the
half bound length manually when the system is switched off.

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 183

Bit 2: Definition of the velocity curve for accelerations and braking actions.

0: Trapezoidal velocity curve for the functions MoveToAbsolutePosition,
MoveRelativePosition, MoveConstantVelocity and StopMotor

1: Sinusoidal velocity curve for the commands functions MoveToAbsolutePosition,
MoveRelativePosition, MoveConstantVelocity and StopMotor

Bit 3: Behaviour in case of motor errors:

0: Axis is immediately switched-off (MotorOff)

1: Axis brakes with the brake ramp and switches-off the motor.

Bit 4: Defines the sign setpoint output.

0: Setpoint sign normal, i.e. if the encoder counts in a positive direction, the sign of the
setpoint is negative.

1: Setpoint sign inverted, i.e. if the encoder counts in a positive direction, the sign of the
setpoint is also positive.

 14 Function library primo.lib

Page 184 User Manual PMCprimo SoftPLC

Bit 5: Defines the counting direction of the encoder.

0: Counting direction normal, i.e. if track B follows on track A, the position counter of
PMCprimo counts in a positive direction.

1: Counting direction inverted, i.e. of track B follows on track A the position counter of
PMCprimo counts in a negative direction.

Bit 6: Function SetEncoderTimeout for encoder monitoring.

0: SetEncoderTimeout defines a monitoring time.

1: SetEncoderTimeout defines a way for monitoring.

Bit 7: Defines, if the factor of the function SetIntegralGain is always or only during standstill
 active.

0: The factor is always active.

1: The factor is only active in case of a standing drive.

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected function:

SetEncoderTimeout and SetIntegralGain

Factory setting: 16 (= 10hex)

Examples:

Declaration:

INST: SetControlWord;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1,usiControlword := 2#010101)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, usiControlword := 2#010101);
bVarBOOL2:=Inst.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 185

SetProportionalGain
PMCprimo-Command: KP (Set proportional gain constant)

Function library: Positioncontrol

Description:

With this function block the proportional factor of the control algorithm is set. A high value of the
KP-factor allows a short reaction time and an exact position control. Therefore, the KP-factor
should be set as high as possible without generating an overshooting.

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axle number from 1 to n (depending on the system)
uiGain (UINT) The control factor from 0 to 65535

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected function:

SetAccelerationFeedForwardGain , SetDifferentialGain, SetIntegralGain,
SetVelocityFeedbackGain und SetVelocityFeedForwardGain

Factory setting: 10

Examples:

Declaration:

INST: SetProportionalGain;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1, uiGain := 150)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, uiGain := 150);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 186 User Manual PMCprimo SoftPLC

SetDifferentialGain
PMCprimo-Command: KD (Set differential gain constant)

Function library: Positioncontrol

Description:

With this function block the differential factor of the control algorithm is set. The differential factor
is useful with very strong varying position errors, e.g. with a step-by-step position modification.
The factor has only a secondary meaning in a well tuned control loop.

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0.
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axle number from 1 to n (depending on the system)
uiGain (USINT) The control factor from 0 to 65535

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected function:

SetProportionalGain,SetAccelerationFeedForwardGain , SetIntegralGain,
SetVelocityFeedbackGain und SetVelocityFeedForwardGain

Factory setting: 0 (switched-off)

Examples:

Declaration:

INST: SetDifferentialGain;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1, uiGain := 100)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, uiGain := 100);
bVarBOOL2:=Inst.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 187

SetIntegralGain
PMCprimo-Command: KI (Set integral gain constant)

Function library: Positioncontrol

Description:

With this function block the integral factor of the control algorithm is set. The integral factor is
useful in order to compensate a constant position error due to a continuous load and oscillations
or with a velocity control. The integral factor ,however, also effects that the axis goes beyond the
target position in case of a positioning, as the position error, which arises during a movement, can
accumulate. This problem is also known as >wind-up<.

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axle number from 1 to n (depending on the system)
uiGain (UINT) The control factor from 0 to 65535

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected function:

SetProportionalGain,SetAccelerationFeedForwardGain , SetDifferentialGain,
SetVelocityFeedbackGain und SetVelocityFeedForwardGain

Factory setting: 0 (switched off)

Examples:

Declaration:

INST: SetIntegralGain;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1, uiGain := 4000)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, uiGain := 4000);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 188 User Manual PMCprimo SoftPLC

SetErrorOptionsWord
PMCprimo-Command: EW (Set error options word)

Function library: Positioncontrol

Description:

With this function block the user can determine the behaviour of PMCprimo in case of an error (Bit
0 stands for input or output on the right and Bit 7 on the left).

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axle number from 1 to n (depending on the system)
usiControlword (USINT) The error options word with following meaning:

Bit 0: Reaction of PMCprimo when exceeding the monitoring time of reference inputs (see also
SetReferenceErrorLimit page 280).

 0: In case of an error PMCprimo gives a signal.

 1: In case of an error PMCprimo gives a signal and switches-off the controller release.

Bit 1: Reaction of PMCprimo when recognising a reference input outside the permissible range
(see also SetReferenceTimeout page 262).

 0: In case of an error PMCprimo gives a signal.

 1: In case of an error PMCprimo gives a signal and switches-off the controller release.

Bit 2: Reaction of PMCprimo when recognising a reference signal before an existing reference
error has been adjusted.

 0: In case of an error PMCprimo gives a signal.

 1: In case of an error PMCprimo gives a signal and switches-off the controller release

Bit 3: Reaction of PMCprimo when exceeding the maximum permissible limit values at the
analogue input.

 0: In case of an error PMCprimo gives a signal.

 1: In case of an error PMCprimo gives a signal and switches-off the controller release

Bit 4: Suppress the error message „reference input is missing” (see also SetReferenceTimeout
page 280), if Bit 0 is not set to 1.

 0: The error message is indicated.

 1: The error message is not indicated, if Bit 0 is set to 0.

Bit 5: Suppress the error message „reference error exceeded” (see also SetReferenceErrorLimit
page 262), if Bit 1 is not set to 1.

 0: The error message is indicated.

 1: The error message is not indicated, if Bit 0 is set to 0..

Bit 6: Suppress the error message “reference signal recognised, before the existing reference
error has been completely tuned”, if Bit 2 is not set to 1.

 0: The error message is indicated.

 1: The error message is not indicated, if Bit 0 is set to 0.

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 189

Bit 7: Suppress the error message “analogue input limit exceeded” (see also
SetAnalogueInputHighLimit, SetAnalogueInputLowLimit page 296), if Bit 3 if not set to 1.

 0: The error message is indicated.

 1: The error message is not indicated.

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected function:

SetReferenceTimeout and SetReferenceErrorLimit

Factory setting: 0

Examples:

Declaration:

INST: SetErrorOptionsWord;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1, usiControlword := 2#10)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, usiControlword := 2#10);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 190 User Manual PMCprimo SoftPLC

SetHighPositionLimit
PMCprimo-Command: LH (Set position limit high)

Function library: Positioncontrol

Description:

This function block sets up a user-defined limit position. If at any time the absolute position of the
motor exceeds the high position limit, PMCprimo gives the „high position limit exceeded“ error
message and goes to the motor off state. This is similar to the action taken on detecting a limit
switch input. The value is defined in encoder counts. If the SetPositionBound value is less than
the high limit, then the high position limit checking is disabled, as the absolute position value
wraps around to zero at the bound position before reaching the high limit position.

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axle number from 1 to n (depending on the system)
diValue (DINT) The software-end position +/- 4.000.000 increments
As of version 2.004 new range: ±2.000.000.000

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected function:

SetLowPositionLimit

Factory setting: 4.000.000 increments

Examples:

Declaration:

INST: SetHighPositionLimit;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1, diValue := 4000)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, diValue := 4000);
bVarBOOL2:=Inst.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 191

SetLowPositionLimit
PMCprimo-Command: LL (Set position limit low)

Function library: Positioncontrol

Description:

With this function block a software-end position is set in a negative direction. PMCprimo only
starts a positioning movement if the target position is within the software-end position. In case the
software-end position is achieved with an end positioning, PMCprimo switches-off the controller
release (motor is de-energised). The input of the software-end position is made in increments.

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axle number from 1 to n (depending on the system)
diValue (DINT) The software-end position +/- 4.000.000 increments
As of version 2.004 new range: ±2.000.000.000

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected function

SetHighPositionLimit

Factory setting: -4.000.000 increments

Examples:

Declaration:

INST: SetLowPositionLimit;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1, diValue := 500)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, diValue := 500);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 192 User Manual PMCprimo SoftPLC

SetMaxPositionError
PMCprimo-Command: SE (Set maximum position error)

Function library: Positioncontrol

Description:

With this function block a maximum position error, which is continuously monitored by PMCprimo,
is set. If the set error limit is exceeded PMCprimo brakes the axis up to the standstill and switches
off the controller release (motor is de-energised). The input of the following error limit is made in
increments.

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axle number from 1 to n (depending on the system)
uiValue (UINT) The maximum following error from 0 to 65535 increments

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected function

SetControlWord

Factory setting: 10.000 increments

Examples:

Declaration:

INST: SetMaxPositionError;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1, uiValue := 200)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, uiValue := 200);
bVarBOOL2:=Inst.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 193

SetPositionCounter
PMCprimo-Command: ZC (Zero position counters or set position)

Function library: Positioncontrol

Description:

The function block sets the position counter to the indicated value. In case the indicated value is
bigger than the position bound (Function SetPositionBound) the position is scaled to the position
bound.

Input variables:

bExecute (BOOL) The position counter is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axle number from 1 to n (depending on the system)
diValue (DINT) The new position in the range of +/- 4.000.000 increments

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected function:

SetPositionBound

Examples:

Declaration:

INST: SetPositionCounter;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1, diValue := 200)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, diValue := 200);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 194 User Manual PMCprimo SoftPLC

SetTimeoutForWindow

PMCprimo-Command: TiI (Set TImeout for Window)

Function library: Positioncontrol

As of version 2.004 available

Description:

The check of SetWindow is made after the time SetTimeoutForWindow. The commands
MoveToAbsolutePosition and MoveRelativePosition are after the adjusted time ready.

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axle number from 1 to n (depending on the system)
uiValue (UINT) The timeout from 0 to 65535 ms

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected function:

SetWindow, MoveToAbsolutePosition und MoveRelativePosition

Factory setting: 0 (switched-of)f

Examples

Declaration:

INST: SetTimeoutForWindow;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1, uiValue:= 100)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, uiValue:= 100);
bVarBOOL2:=Inst.bDone;

Example in FBD:
Fehler! Es ist nicht möglich, durch die Bearbeitung von Feldfunktionen Objekte zu
erstellen.

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 195

SetVelocityFeedbackGain
PMCprimo-Command: KV (Set velocity feedback gain constant)

Function library: Positioncontrol

Description:

With this function block the actual value factor of the control algorithm is set. The actual value
factor scales the motor velocity resulting from the measured position. The use of the factor can be
compared with the effect from a tachometer sensor. The factor has a damping effect and allows a
higher KP-factor and improves the reaction velocity of the axis, therefore.

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axle number from 1 to n (depending on the system)
uiGain (UINT) The control factor from 0 to 65535

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected function:

SetAccelerationFeedForwardGain , SetDifferentialGain, SetIntegralGain, SetProportionalGain und
SetVelocityFeedForwardGain

Factory setting: 0 (switched-off

Examples

Declaration:

INST: SetVelocityFeedbackGain;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1, uiGain := 150)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, uiGain := 150);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 196 User Manual PMCprimo SoftPLC

SetVelocityFeedForwardGain
PMCprimo-Command: KF (Set velocity feed-forward gain constant)

Function library: Positioncontrol

Description:

With this function block the setpoint factor of the control algorithm is set. The setpoint factor
influences the difference between the set velocity and the measured actual velocity. In case of a
pure proportional controller a constant following error can be obtained during driving with constant
velocity. By specifying a factor the following error can be reduced against zero or even brought to
the negative range. The –factor is added to the required velocity so that the measured actual
velocity is equal to the calculated setpoint velocity.

For the ‘PMCprimo Drive‘ the value can be determined by the following formula:
KF = 15360 * 1000 / resolution per revolution

Example: resolution 4096 increments/revolution -> KF = 3750

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axle number from 1 to n (depending on the system)
uiGain (UINT) The control factor from 0 to 65535

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected function:

SetAccelerationFeedForwardGain , SetDifferentialGain, SetIntegralGain, SetProportionalGain und
SetVelocityFeedbackGain

Factory setting: 0 (switched-off)

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 197

Examples:

Declaration:

INST: SetVelocityFeedForwardGain;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1, uiGain := 150)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, uiGain := 150);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 198 User Manual PMCprimo SoftPLC

SetVirtualMotorMode

PMCprimo-Command: VM (Set virtual motor mode)

Function library: Positioncontrol

Description:

This function block is used in order to declare an axis to a virtual axis. In a virtual mode an axis
acts without motor and encoder, as the actual position is internal calculated from the demand
position.

Application of the virtual mode:

• Test of functions and programs without being connected to the machine.

• Simulation of a master axis.

Input variables:

bExecute (BOOL) The motor is set in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
usiMode (USINT) 0: The axis is a real axis. A motor is operated with a position
 control and the encoder input is the actual value acceptance
 signal.
 1: The axis is a virtual axis. The drive is not released by the
 axis. The setpoint signal is not defined and, therefore, a motor
 should not be connected to a virtual axis.
 sein. The actual value acceptance signal is internally simulated.

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Factory setting: 0 (Axis real)

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 199

Examples:

Declaration:

INST: SetVirtualMotorMode;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1, usiMode := 1)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, usiMode := 1);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 200 User Manual PMCprimo SoftPLC

SetWindow
PMCprimo-Command: SW (Set window)

Function library: Positioncontrol

Description:

This function block is used to specify the permissible target window in increments. PMCprimo
signals position achieved, if the motor is within the window target after the braking action.

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axle number from 1 to n (depending on the system)
uiWindow (UINT) The target window from 0 to 65535 increments

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected function:

MoveRelativePosition and MoveToAbsolutePosition

Factory setting: 100 increments

Examples:

Declaration:

INST: SetWindow;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1, uiWindow := 200)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, uiWindow := 200);
bVarBOOL2:=Inst.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 201

14.14 Positioning

AbortMotor
PMCprimo-Command: AB (Abort, emergency stop)

Function library: Positioning

Description:

The motor brakes with the brake ramp SetAbortDeclaration (page 226) up to the velocity 0. This
function block can be used with each movement.

Illustration 20: end of movement with AB-Command

The function block has only an effect on the momentary selected axis.

Input variables:

bExecute (BOOL) The axis is braked in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axle number from 1 to n (depending on the system)

Output variables:

bDone (BOOL) Axis has be braked (True) or function block is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected function:

SetAbortDeceleration

 14 Function library primo.lib

Page 202 User Manual PMCprimo SoftPLC

Examples:

Declaration:

INST: AbortMotor;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1);
bVarBOOL2:=Inst.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 203

GetError
PMCprimo-Command: $Fx.x

Function library: Positioning

Description:

This function block returns the actual error value of the axis.

The following error signals can be returned:

Code Error

0 Internal program error!

1 Program cannot be started, as max. number of running processes is achieved!

2 This command is not implemented on the control!

3 The command MA cannot be executed, as motor off!

4 The target position is outside of the defined software end positions!

5 The software end position in plus-direction has been overrun!

6 The software end position in minus direction has been overrun!

7 The command MA cannot be executed, as motor runs already!

8 The command MR cannot be executed, as motor off!

9 The command MR cannot be executed, as motor runs already!

10 The command VC cannot be executed, as motor off!

11 The command VC cannot be executed, as motor runs already

12 Attempted division by means of zero!

13 Before calling a program you have to switch over to the sequential command
sequence!

14 Overflow of the data stack!

15 Motiongenerator runs already

18 Error Motiongenerator: Variable <$MNAME> is not defined.

19 Error Motiongenerator: Variable <$MNPT> is not defined.

20 Variable <...> is already used for <WV>

21 Input is not defined as counting input!

22 Input is not defined as release input!

23 Too less working memory!

24 The following error limit has been exceeded!

25 Input cannot be defined as “reset input”!

26 Trigger variables are not defined!

27 The program <...> cannot be started, as it runs already!

 14 Function library primo.lib

Page 204 User Manual PMCprimo SoftPLC

Code Error

28 The target position could not be achieved!

29 Encoder signals have not been received!

30 Error when reading the encoder

31 The command XM cannot be executed, as motor off!

34 Too much time was required for the setpoint generation!

35 Program <...> cannot be executed, as it is not available!

36 ML must be executed before BR

37 The reference error limit has been exceeded!

38 The reference error could not be corrected in a cycle!

39 The monitoring time for the reference signal has been expired!

40 The reference error has been reduced to the maximum value!

41 Program <...> is momentary not active

42 Velocity allocation only possible with a linear Map

47 The input number must not be bigger than 8!

48 This input module number is not defined!

49 The output number must not be bigger than 8!

50 The output module is not available!

52 The output has already been defined as “error output”!

53 The output has already been defined as “electronic cam”!

54 The output has already been defined for “pulse at cycle limit”!

55 Not defined error message!

56 The limit switch has been activated and motor switched-off!

57 The input is already defined!

58 The input is not defined as “limit switch”!

59 At least 2 value pairs must be defined for the map generation

60 Error Motiongenerator: Variable $MSnnn has not been defined

61 Error Motiongenerator: False value for $MXnn

62 Error Motiongenerator. False value for $MYnn

63 Target position is outside of the software end position

64 Variable for motion generation is not defined

66 The parameter value <...> is not permissible for the command <...> !

67 Command ML cannot be executed, as axis in mapping

68 Error motion generation: variable $MMnn is smaller than the previous value!

69 Input cannot be defined as “input function”!

70 Input cannot be defined as “enable input!

71 Input cannot be defined as “counting input”!

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 205

Code Error

72 Master and slave axis must be different from each other!

73 The axis <...> is not available (Command <...>)!

76 <PC> cannot be executed, as analogue auxiliary output is defined!

77 The output has already been defined as auxiliary output!

78 For this axis an encoder torque consumption has already been defined!

79 Input is not a “fast input”!

80 The “fast input” is already defined

81 A reference signal has not been defined

82 Command IB not possible, as axis virtual and motor off

83 Command LW cannot be executed, as allocation as slave via Slave ML is already
made

84 The output is defined and can, therefore, not be manually switched.

85 The output has already been defined as reference output.

86 The output has already been defined as error output for the analogue input limit

87 The output is not defined

88 The output has already been defined as reference error correction

89 For the axis the encoder zero track is already defined

90 For the axis an input is defined as encoder torque consumption

91 For the axis an input is defined as reference input

92 The input is already used for another axis

93 Faster input is not defined as encoder torque consumption

94 Faster input is not defined as reference input

95 The output has already been defined for “pulse issue with a reference signal”

96 Error when incrementing: upper limit of 2*SV has been exceeded

97 Error when incrementing: crawl speed must not get bigger than SV

98 The direction of the velocity must not be changed due to incrementing

99 The command XR cannot be executed, as motor off!

100 The command XR cannot be executed, as motor already runs!

101 Error Motiongenerator: Variable $MFnn has not been defined

102 Error Motiongenerator: Variable $MWnn has not been defined

103 Error Motiongenerator: Variable $MAnn has not been defined

104 Error Motiongenerator: Variable $MZnn has not been defined

105 Error Motiongenerator: Variable $MXnn has not been defined

106 Error Motiongenerator: Variable $MYnn has not been defined

107 Error Motiongenerator: Variable $MXnn > $MYnn

 14 Function library primo.lib

Page 206 User Manual PMCprimo SoftPLC

Code Error

108 Error Motiongenerator: Variable $MBnn has not been defined

109 Error Motiongenerator: Variable $MCnn has not been defined

110 Error Motiongenerator: Segment No.nn: Sum of the percentage indication must
result in 100 %

111 Motiongenerator not released

114 The output has already been defined as <JF>

115 Command <XR> or <XM> has been stopped

116 BUS-Variable is not defined

117 Lower limit value for analogue input has been fallen below

118 Upper limit value for analogue input has been exceeded

119 ML must be executed before XV

120 The input is defined for encoder torque consumption

121 The input is defined as reference input

122 Position control loop cannot be activated, as initialisation active

123 Analogue auxiliary output cannot be defined, as position control active

124 It cannot be switched to the virtual mode, as analogue auxiliary output is defined.

125 Transmission ratio can only be incremented, when the position table is active

126 Program <....> is not available

127 False output number

128 False output module number

129 Value range for shift register with Command TC is between1 and 32

130 FC-command only possible with a switched-off position control loop

131 VM-command only possible with a switched-off position control loop

132 It is not possible to couple without software clutch in case of a driving master

133 The command VC cannot be executed, as axis in mapping!

134 Idle loop absolute position is already active on the axis

135 Idle loop relative position is already active on the axis

136 Idle loop reference input is already active on the axis

137 Idle loop cycle limit is already active on the axis

138 Idle loop overflow counter is already active on the axis

139 Axis can only be virtual axis

140 Position table (Map) <...> is not available

141 Master value is not available in a position table (Map)

142 Axis is not available

143 Variable is not defined

144 False supply station number with input description

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 207

Code Error

145 A program is not defined for the input

146 A fast input is already defined for the axis

149 It is not possible to run more than 8 master axes via the CAN-Bus

150 Command UL cannot be executed, as position allocation is active

151 ML must be executed before XM

152 External master value is not allowed with XR

153 Attention data are cancelled, as incorrect check sum calculation

154 Monitoring runs already

155 The following baud rates are adjustable:
9600, 14400, 19200, 38400, 57600, 115200

156 A value for recording has not been selected

157 If monitoring runs, TW must not be modified

158 Channels >4 do not exist

159 False data type TW command

160 Programs are not defined

162 Mode <...> cannot be selected for TC command

163 Incorrect counting value <...> for TC command

165 Attention!!! Error with software update

171 For software differential NL must be executed

172 Controller error: heat sink temperature > 80 °C

173 Controller error: Overvoltage on DC link

174 Controller error: Interruption, short circuit in feedback loop (resolver, Hiperface)

175 Controller error: Undervoltage on DC link

176 Controller error: Motor limit temperature exceeded

177 Controller error: Internal supply voltage not OK

178 Controller error: Maximum velocity exceeded

179 Controller error: EEprom checksum errorr

180 Controller error: Flash-Eprom checksum error

181 Controller error: Interruption or short circuit with brake

182 Controller error: Motor phase is missing

183 Controller error: Unit internal temperature too high

184 Controller error: Power step defective

185 Controller error: I2t-limit exceeded

186 Controller error: 2 or 3 phases are missing in the supply voltage

187 Controller error: A/D-Converter defectivet

188 Controller error: Ballast resistor defective or incorrect setting

 14 Function library primo.lib

Page 208 User Manual PMCprimo SoftPLC

Code Error

189 Controller error: Phase is missing in the supply voltage

190 Controller error: System Software is not ok

191 Controller warning: I2t-step is exceeded

192 Controller warning: Pre-set ballast capacity is achieved

193 Controller warning: Watchdog for extension board (PMCprimo) has responded

194 Controller warning: Phase of the supply voltage is missing

195 Controller warning: Hiperface: basic setting from motor loaded

196 Controller warning: Extension board (PMCprimo) does not function correctly

197 Controller warning: Enable Signal not switched

198 Error CAN-Bus: Initialisation: Safety lines are not online

199 Error CAN-Bus: When writing PDO-data: CAN not operational in Mode

200 Error CAN-Bus: When writing on the pipe: Buffer full

201 Error CAN-Bus: The safety line has been switched by a participant

202 Error CAN-Bus: The 12V-voltage supply has been switched off

203 Error CAN-Bus: Overflow in the reception buffer. Data went lost

204 Error CAN-Bus: Overflow in the transmission buffer: Data get lost

205 Error CAN-Bus: The CAN-Controller has been switched off due to too many errors

206 Error CAN-Bus: The reception buffer in the CAN-Controller is overflown

207 Error CAN-Bus: An error occurred during transmission

208 Error CAN-Bus: The Watchdog of the CAN-Module has reacted

209 Error CAN-Bus: Errors occurred with the SDO-transmission. Time out

210 Error CAN-Bus: An error has occurred with the SDO-transmission, e.g. number of
Bytes wrong

211 Error CAN-Bus: Error message, this message is not implemented

212 Error CAN-Bus: Too many CAN errors: CAN-Bus is switched-off

213 CAN-Bus not active !

214 CAN-nodes nn: Firmware-Version does not fit to Host

215 Error: Servo controller cannot be switched-on via CAN

216 Error: Servo controller cannot be switched-off via CAN

217 PD-command only possible from axis nn!

218 Error: CAN-Bus: Node guarding error, node nn!

219 Attention data loss in a battery back-up memory

220 Battery back-up memory is not available in the system

221 Position table (Map) <...> has not been sent to axis (Command TM)

223 Mapping is not active

224 Error of servo controller via CAN

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 209

Code Error

225 Attention: Bit 1 of FW has been set to 1, as it is RJ>SB

226 Variable could not be allocated to drive command!

227 Data are not available in Flash!

228 Too less Flash-memory !

229 Error has occurred during memorising !

229 Error while storing data !

230 Buffer for storing reference position is full !

231 Direction has changed ! The buffer with reference position must delete

232 Possible baudrates: 9600, 19200 (XOn/XOff), 38400 (XOn/XOff)

233 Output is already defined as 'velocity trigger output

234 To many PLC-tasks active

235 No correct datas for TR

236 No output definition for CAN-IO modul

237 TD %d,%d is not defined!

238 The output is already defined as 'outside window output

239 Cannot execute ID, while axis is not in status 'PC'

240 Parameter <%ld> for command <%c%c> out of range, if bit 4 of RW is set

241 Parameter <%ld> for command <%c%c> out of range, if bit 4 of RW is not set

242 Paramater <%ld> for command <%c%c> out of range, if bit 6 of RW is set

243 Paramater <%ld> for command <%c%c> out of range, if bit 6 of RW is not set

244 Value of RC<1000 not allowed, because bit 7 of RW is set to 0

245 Value of RV>200 not allowed, because bit 5 von RW is set to 0.

246 Bit 5 of RW is set to 1, because bit 7 was set to 1

247 Intern error PLC

248 Cannot execute drive command, because node is no drive

249 Drive error: Commutation error

250 Variable $%s[%d] is not defined

251 Node number not defined (command <%c%c)

252 Node number %d is already in use (command <%c%c)

253 No CAN-device found

254 Cannot execute drive command, because buffer overflow

255 Warning: SRam battery low

256 Drive error: Enable switched on before AS-option

257 Drive error: Earth short circuit

258 Drive warning from CAN

259 %d bytes Compact Flash memory free

 14 Function library primo.lib

Page 210 User Manual PMCprimo SoftPLC

Code Error

260 Cannot execute <XM> while motor is running

261 Command QA0:CAN-Adr can only done on the host

262 The analog output <%ld> is not available! (command <%c%c>)

263 Reserved for Soft-SPS

264 Reserved for Soft-SPS

265 Reserved for Soft-SPS

266 Reserved for Soft-SPS

267 Reserved for Soft-SPS

268 Reserved for Soft-SPS

269 Reserved for Soft-SPS

270 Reserved for Soft-SPS

271 Reserved for Soft-SPS

272 Reserved for Soft-SPS

273 PD command not possible! PMCtendo DD4 version wrong(< 4.94)

274 Node %d, Drive command not completed !

276 Battery buffered memory is used by SoftPLC

277 The maximum possible position (SB*SM) is greater than the position limit of %ld
(command <%c%c>)

278 The predefined map 'LINEAR' can't be changed

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 211

Input variables:

bExecute (BOOL) The error value is read in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axle number from 1 to n (depending on the system)

Output variables:

bDone (BOOL) Value has been read (True) or module is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)
diValue (DINT) Error message according to Table

See also:

GetStatus

Examples:

Declaration:

INST: GetError;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1)
LD INST.bDone
ST bVarBOOL2
LD INST.biValue

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 212 User Manual PMCprimo SoftPLC

GetStatus
PMCprimo-Command: $Sx.x

Function library: Positioning

Description:

This function block restores the actual status of an axis.

Summary of all Codes which PMCprimo restores depending on the status of the axis.

0 Position control loop closed (EnablePositionControl)

8 Position control loop open, motor off (MotorOff)

66 Axis waits on the coupling at the beginning of a position allocation out of (C)

67 Axis executes a coupling process at the beginning of a position allocation out of (C).

68 Axis executes a compensating movement for the beginning of a position allocation (A)

256 Execution of an endless positioning or velocity control (MoveConstantVelocity)

512 Axis executes a Positioning Command (MoveToAbsolutePosition, MoveRelativePosition)

2048 Positioning allocation (= Map) active (ExecuteMap)

4096 Axis executes a Stop-command (StopMotor)

8192 Initialisation runs (InitialisePosition, InitialisePositionBounds)

Input variables:

bExecute (BOOL) The status is read in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0 except diValue
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axle number from 1 to n (depending on the system)

Output variables:

bDone (BOOL) Value has been read (True) or module is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)
diValue (DINT) Error message according to Table

See also:

GetError

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 213

Examples:

Declaration:

INST: GetStatus;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;
diValue:DINT;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1)
LD INST.bDone
ST bVarBOOL2
LD INST.biValue
ST diValue

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1);
bVarBOOL2:=Inst.bDone;
diValue:=Inst.diValue;

Example in FBD:

 14 Function library primo.lib

Page 214 User Manual PMCprimo SoftPLC

InitialisePosition
PMCprimo-Command: IN (Initialise position)

Function library: Positioning

Description:

PMCprimo executes an initialisation function so long, until a reference signal is recognised. During
the initialisation PMCprimo signals „ I “.

Execution: The motor accelerates to the demand velocity and keeps the same so long constant,
until PMCprimo detects a reference signal. The direction, to which the motor drives, is specified
via an argument. The position counter is immediately set to the value of SetReferenceOffset
(Reference offset page 271) and the motor is stopped. Afterwards the motor moves back to the
position 0.

The function block for the initialisation can also be used with an open position control loop. In this
case PMCprimo waits for a reference signal and when detecting a reference signal the position
counter is set to the value of SetReferenceOffset.

The return to the reference signal can be prevented with the function block
SetReferenceOptionsWord (page 272).

The function block SetReferenceTimeout (page 280) also acts with the execution of this function
block.

Illustration 21: Initialisation with return to the reference signal

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 215

Input variables:

bExecute (BOOL) The initialisation is started in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axle number from 1 to n (depending on the system)
bDirection (BOOL) The rotational direction 0: negative 1: positive

Output variables:

bDone (BOOL) Initialistion completed (True) or module is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

See also:

InitialisePositionBounds

Examples:

Declaration:

INST: InitialisePosition;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1, bDirection := 0)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, bDirection := 0);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 216 User Manual PMCprimo SoftPLC

InitialisePositionBounds
PMCprimo-Command: IB (Initialise position and bounds)

Function library: Positioning

Description:

This function block is similar to the function block InitialisePosition. With this function block the
position bound of the machine is also determined additionally to the initialisation of the position.
PMCprimo executes an initialisation command at the selected axis so long, until a reference
signal is recognised for the first time. Following the axis drives further with constant velocity, until
the reference signal is recognised for the second time. PMCprimo considers the distance between
recognising the reference signal as position bound of the selected axis. PMCprimo signals “I
“during the initialisation.

Execution: The motor accelerates to the setpoint velocity and keeps the same so long constant,
until PMCprimo recognises a reference signal. The direction, to which the motor drives, is
determined via an argument. The position counter is immediately set to the value of
SetReferenceOffset (Referenzoffset page 271) and the motor is braked. Following the motor
drives back to the position 0.

The function block for the initialisation can also be used with an open position control loop. In this
case PMCprimo waits for a reference signal and when recognising a reference signal the position
counter is set to the value of SetReferenceOffset. Following the distance between reference
signals as position bound is entered to the value SetPositionBound.

The return to the position 0 can be prevented with the function block SetReferenceOptionsWord
(page 272).

Illustration 22: Initialisation position and position bound

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 217

Input variables:

bExecute (BOOL) The initialisation is started in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axle number from 1 to n (depending on the system)
bDirection (BOOL) The rotational direction 0: negative 1: positive

Output variables:

bDone (BOOL) Initialistion completed (True) or module is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

See also:

InitialisePosition

Examples:

Declaration:

INST: InitialisePositionBounds;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

 Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1, bDirection := 0)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, bDirection := 0);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 218 User Manual PMCprimo SoftPLC

MoveConstantVelocity
PMCprimo-Command: VC (Move at constant velocity)

Function library: Positioning

Description:

This function block is used, to drive the motor with a constant velocity in the specified direction.
PMCprimo accelerates the motor with the acceleration value SetAcceleration (page 227), until it
has achieved the velocity determined with the function block SetVelocity (page 240). The motor
drives with constant velocity until to a stop signal is detected.

PMCprimo signals the command execution with the sign “V” at the serial interface. Move
commands can only be executed with a closed position control loop.

Illustration 23: Move with constant velocity

Input variables:

bExecute (BOOL) The movement is started in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axle number from 1 to n (depending on the system)
bDirection (BOOL) The rotational direction 0: negative 1: positive

Output variables:

bDone (BOOL) Movement started (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

See also:

SetAcceleration, SetVelocity, SetSlowSpeedMode and SetSlowSpeed

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 219

Examples:

Declaration:

INST: MoveConstantVelocity;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

 Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1, bDirection := 0)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, bDirection := 0);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 220 User Manual PMCprimo SoftPLC

MoveRelativePosition
PMCprimo-Command: MR (Move units relative to current position)

Function library: Positioning

Description:

The motor drives the specified relative position. The motor moves from its instantaneous position by
the set increments. The movement follows to trapezoidal or sinusoidal velocity profiles (Illustration 24
).

The motor accelerates and stops with the acceleration values which have been specified with the
function blocks SetAcceleration and SetDeceleration. The travelling speed is defined with function
block SetVelocity. The position is indicated in increments. When using MoveRelativePosition für
rotary axes see also function block SetPositionBound.

PMCprimo signals the command execution with the sign “M”. Travel commands can only be executed
with an active position control loop. A relative positioning is independent on the Bits 1 – 3 of the
function block SetMoveOptionsWord.

During an execution of this function the value of the velocity, set with the function blocks SetVelocity
or SetSlowSpeed, can be modified. The switchover of the velocity step can take place with the
module SetSlowSpeedMode at any time, however, the value for SetSlowSpeed must always be
smaller than the value of SetVelocity.

The target position is checked before the execution of a travelling command as to the observance of
the software limits (function blocks SetLowPositionLimit and SetHighPositionLimit). In case the target
position is outside of the software limits, The travelling command is not executed and PMCprimo
signals the error “target position is outside of the software limits”.

It is possible to leave a position allocation (see function block ExecuteMap page 92) with the function
MoveRelativePosition.

Input variables:

bExecute (BOOL) The movement is started in case of a change from 0 to 1
 0 resets the function block and the output variables are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
diValue (DINT) The relative target position in increments in the range of ±8.389.000

Output variables:

bDone (BOOL) Target position has been achieved (True) or movement is still not
 completed (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

SetAcceleration, SetVelocity, SetDeceleration, SetSlowSpeedMode, SetLowPositionLimit,
SetHighPositionLimit and SetSlowSpeed

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 221

Examples:

Declaration:

INST: MoveRelativePosition;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1, diValue := 2000)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, diValue := 2000);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 222 User Manual PMCprimo SoftPLC

MoveToAbsolutePosition
PMCprimo-Command: MA (Move to absolute position)

Function library: Positioning

Description:

The motor moves to the specified absolute position. The movement follows a trapezoidal or sinusoidal
velocity profile (Illustration 24). It can be selected via Bit 2, the function block SetControlWord, if it is
accelerated trapezoidally or sinusoidally. The motor accelerates with the accelerate value of
SetAcceleration (page 227) and stops with the ramp of SetDeceleration (page232). The travel velocity
is defined with the function block SetVelocity (page 240). The position is indicated in increments.
When using MoveToAbsolutePosition for cyclic axes see also function block SetPositionBound (page
133).

It is possible to complete a position allocation (function block ExecuteMap) with this module. It can be
determined via Bit 6 of SetMapOptionsWord (page 127), if it is moved with the actual or with the
velocity defined by SetVelocity to the specified position. If Bit 2 of SetMoveOptionsWord is not set, the
instantaneous cycle is not left during uncoupling. If necessary, it is stopped and travelled to the
demand position in an opposite direction. If Bit 2 of SetMoveOptionsWord (see page 234) is set, the
direction defined with Bit 3 is always kept. If this does not coincide with the instantaneous direction, it
is modified.

If Bit 1 of SetMoveOptionsWord is set, the shortest way is always travelled.

Enhancement as of version 1.008a:
While clutching out of a map with MoveToAbsolutePosition, the actual velocity is compared with
SetSlowSpeed. If the velocity of the slave is lower resp. equal SetSlowSpeed, than SetVelocity is
used.

Illustration 24: Trapezoidal velocity profile

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 223

Illustration 25: Positions course with trapezoidal velocity profile

The required velocity cannot be achieved with a very low acceleration value which results in a triangle
instead of a trapezoidal velocity profile.

Illustration 26: Triangle velocity profile

PMCprimo signals the command execution with sign “M” at the serial interface. Travel commands can
only be executed with an active position control loop.

 14 Function library primo.lib

Page 224 User Manual PMCprimo SoftPLC

The target position is checked before execution of a move command as to the observance of the
software limit (function blocks SetLowPositionLimit and SetHighPositionLimit). If the target position is
outside of the software limits, the move command is not executed and PMCprimo signals the error
“target position is outside of the software limits”.

Input variables:

bExecute (BOOL) The movement is started in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
diValue (DINT) The absolute target position in increments in the range of ±4.000.000

Output variables:

bDone (BOOL) Target position has been achieved (True) or movement is still not
 completed (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

SetAcceleration, SetVelocity, SetDeceleration, SetSlowSpeedMode, SetLowPositionLimit,
SetHighPositionLimit, SetMoveOptionsWord and SetSlowSpeed

Examples:

Declaration:

INST: MoveToAbsolutePosition;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

 Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1, diValue := 2000)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, diValue := 2000);
bVarBOOL2:=Inst.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 225

ResetError
PMCprimo-Command: $Fx.x=0

Function library: Positioning

As of version 1.010 available

Description:

With this function block a channel error is erased and also the error message at the LCD display is
cleared.

Input variables:

bExecute (BOOL) The error is cleared in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
udiValue (UDINT) The brake ramp of 1000 to 2.000.000.000 increments/second²

Output variables:

bDone (BOOL) Error was cleared (True) or it is still under operation(False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Examples:

Declaration:

INST: ResetError;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 226 User Manual PMCprimo SoftPLC

SetAbortDecelaration
PMCprimo-Command: XA (Set deceleration for AB command)

Function library: Positioning

Description:

This function block is used to specify the brake ramp for the abort command in increments/second2.
The deceleration ramp can be modified at any time. The smallest adjustable ramp is 1000. This
deceleration ramp is only used with the abort function AbortMotor (page 201).

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
udiValue (UDINT) The brake ramp of 1000 to 2.000.000.000 increments/second²

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation(False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)
Connected functions:

AbortMotor

Factory setting: 1.000.000 increments/second²

Examples:

Declaration:

INST: SetAbortDeceleration;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1, udiValue := 1000000)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, udiValue := 1000000);
bVarBOOL2:=Inst.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 227

SetAcceleration
PMCprimo-Command: SA (Set acceleration)

Function library: Positioning

Description:

This function block is used, to specify the acceleration value in increments/second². The acceleration
value can be modified at any time. The lowest possible acceleration value is 1000.

Illustration 27: Higher and low acceleration value

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
udiValue (UDINT) The value of 1000 to 2.000.000.000 increments/second²

Output variables:

bDone (BOOL) Value has been written (True) or it is still under
 operation(False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

MoveToAbsolutePosition, MoveRelativePosition and MoveConstantVelocity

Factory setting: 100.000 increments/second²

 14 Function library primo.lib

Page 228 User Manual PMCprimo SoftPLC

Examples:

Declaration:

INST: SetAcceleration;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1, udiValue := 1000000)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, udiValue := 1000000);
bVarBOOL2:=Inst.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 229

SetBacklashDistance
PMCprimo-Command: BL (Set backlash compensation distance)

Function library: Positioning

Description:

This function block allows the compensation of a mechanical backlash. After every change of the
direction of the motor, the distance, defined in increments, is added to the actual position. This
backlash compensation acts only with the execution of MoveToAbsolutePosition or
MoveRelativePosition.

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
udiValue (UDINT) The compensation from 0 to 65.535 increments

Output variables:

bDone (BOOL) Value has been written (True) or it is still under
 operation(False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)
Connected functions:

MoveToAbsolutePosition, MoveRelativePosition

Factory setting: 0 (switched-off)

Examples:

Declaration:

INST: SetBacklashDistance;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

 Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1, uiValue := 20)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, uiValue := 20);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 230 User Manual PMCprimo SoftPLC

SetCreepDistance
PMCprimo-Command: SC (Set creep distance)

Function library: Positioning

Description:

The standard trapezoidal velocity profile of a positioning movement can be completed by the
introduction of a way with creep speed for the positioning. The creep speed is set with the function
block SetSlowSpeed. The creep speed is used for a slow move of the target position. This command
is only effective when SetSlowSpeedMode (page 238) is set to 0.

The deceleration action is initiated so early that the axis travels the slow creep speed 200 increments
the latest, before achieving the target position.

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
uiValue (UINT) The way with creep speed from 0 to 65.535 increments

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation(False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

MoveToAbsolutePosition, MoveRelativePosition, SetSlowSpeed und SetSlowSpeedMode

Factory setting: 0 (switched-off)

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 231

Examples:

Example in IL:

Declaration:

INST: SetCreepDistance;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1, uiValue := 1000)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, uiValue := 1000);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 232 User Manual PMCprimo SoftPLC

SetDeceleration
PMCprimo-Command: DC (Set deceleration for ST command)

Function library: Positioning

Description:

This function block is used, to specify the deceleration ramp in increments/second2. The deceleration
ramp can be changed at any time. The smallest adjustable deceleration ramp is 1000. The
deceleration ramp is used with the function blocks StopMotor, MoveToAbsolutePosition,
MoveRelativePosition, InitialisePosition and InitialisePositionBounds. A separate deceleration ramp
can be set with SetAbortDecelaration for the abort command AbortMotor.

Illustration 28: Set brake ramp

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
udiValue (UDINT) The value from 1000 up to 2.000.000.000 increments/second²

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation(False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 166)

Connected functions:

StopMotor, MoveToAbsolutePosition, MoveRelativePosition, InitialisePosition and
InitialisePositionBounds

Factory setting: 100.000 increments/second²

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 233

Examples:

Example in IL:

Declaration:

INST: SetDeceleration;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1, udiValue := 1000000)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, udiValue := 1000000);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 234 User Manual PMCprimo SoftPLC

SetMoveOptionsWord
PMCprimo-Command: ZW (Set move position control word)

Function library: Positioning

Description:

With this function block the user can determine the behaviour of PMCprimo with positioning
commands (In case of Input and Output Bit 0 stands on the right and Bit 7 on the left side).

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
usiControlword (USINT) Each Bit has the following meaning:

Bit 0: reserved

Bit 1: Determines, if the position bound has an influence on the positioning commands.

0: The position bound set with SetPositionBoundn has an influence on the execution of
positioning commands.

1: The position bound is considered with the execution of an absolute positioning
(MoveToAbsolutePosition). In case of an absolute positioning the axis travels to the position
within the position bound which corresponds to the absolute position (Example: rotary axis
travels not 1,5 but 0,5 machine cycles).

Bit 2: This Bit determines that the starting direction of the absolute setpoint positions is determined at
the rotary axes with Bit 3.

0: Direction for starting of the setpoint position not defined.

1: Direction for starting of the setpoint position can be defined with Bit 3.

Bit 3: This Bit determines the starting direction of the setpoint position with an absolute positioning at
a rotary axis, if Bit 2 is set to 1.

0: The positioning is executed in a positive starting direction.

1: The positioning is executed in a negative starting direction.

Bit 4: Version 2.000 or higher:
If bit 1 of the option word is set and the target position is a multiple of the value of
SetPositionBound for a move absolute this bit decides to move one bound or not.

0: If bit 1 is set and driveway=n*position bound: no movement.

1: If bit 1 is set and driveway=n * position bound: move one bound.

Bit 5: reserved

Bit 6: reserved

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 235

Bit 7: Version 2.000 or higher:
If the axis is not moving in mapping an automatic bound correction is possible with this bit.
Therefore the position bound is multiplied with the scale map set by the function block
SetScaleMapping. With an odd gear transmission a reference sensor is no longer necessary.
Example: position bound=4096; scale map= 1:3
The bound for it is 1365,33. Therefore a drift of one increment every 3 bound would happened.
With correction the bound set two cycles to 1365 and one cycle to 1366. The calculated bound
can be shown with the function GetMappedMasterBound.

0: Automatic correction is not active
1: Automatic correction is active

Output variables:

bDone (BOOL) Value has been written (True) or it is still under
 operation(False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Factory setting: 0

Examples:

Example in IL:

Declaration:

INST: SetMoveOptionsWord;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1, usiControlword := 2#10)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, usiControlword := 2#10);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 236 User Manual PMCprimo SoftPLC

SetSlowSpeed
PMCprimo-Command: SS (Set slow speed)

Function library: Positioning

Description:

With this function block the velocity of the creep speed is specified in increments/second. The velocity
of the creep speed is the travel velocity of the axis, when SetSlowSpeedMode (page 238) is set to 1.
The value for the execution of positioning command must be smaller than the value SetVelocity (page
240).

The velocity SetSlowSpeed is also used with a reference equalising travel when the axis should
stand.

Additionally it is also used for an adjustment of SetMapBaseOffset, SetSlaveMapOffset and
SetScaleMapping with a stopped master.

Illustration 29: positioning with creep speed

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
udiValue (UDINT) The velocity from 0 to 4.000.000 increments/s

Output variables:

bDone (BOOL) Value has been written (True) or it is still under
 operation(False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

SetSlowSpeedMode, MoveConstantVelocity, MoveRelativePosition, MoveToAbsolutePosition,
SetReferenceCorrectionVelocity, SetMapNBaseOffset, SetSlaveMapOffset and SetScaleMapping

Factory setting: 0 (stoppage)

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 237

Examples:

Example in IL:

Declaration:

INST: SetSlowSpeed;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1, udiValue := 30000)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, udiValue := 30000);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 238 User Manual PMCprimo SoftPLC

SetSlowSpeedMode
PMCprimo-Command: VJ (Set slow velocity mode)

Function library: Positioning

Description:

With this function block it is switched over between the velocity values SetVelocity and
SetSlowSpeed. With SetSlowSpeedMode = 0 the axis moves with SetVelocity (page 240). With
SetSlowSpeedMode = 1 the axis moves the velocity set with SetSlowSpeed. The adjustment of a
creep speed (function block SetCreepDistance page 230) is only valid with SetSlowSpeedMode = 0.

Illustration 30: Velocity steps SetVelocity, SetSlowSpeed

In case of a switchover between SetVelocity and SetSlowSpeed during the execution of
MoveToAbsolutePosition or MoveRelativePosition the specified value for SetSlowSpeed must
always be smaller than the value for SetVelocity, as otherwise the deceleration ramp cannot be
calculated correctly (deceleration ramp very steep).

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
usiValue (USINT) The velocity step (0 or1)

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation(False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

SetSlowSpeedMode, MoveConstantVelocity, MoveRelativePosition, MoveToAbsolutePosition,
SetReferenceCorrectionVelocity, SetMapBaseOffset, SetSlaveMapOffset and SetScaleMapping

Factory setting: 0 (standard velocity step)

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 239

Examples:

Example in IL:

Declaration:

INST: SetSlowSpeedMode;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1, usiValue := 1)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, usiValue := 1);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 240 User Manual PMCprimo SoftPLC

SetVelocity
PMCprimo-Command: SV (Set velocity)

Function library: Positioning

Description:

With this function block the velocity is specified in increments/second. The velocity can also be
changed during move

Illustration 31: Change travel velocity during a move

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables are
 set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
udiValue (UDINT) The velocity from 0 to 4.000.000 increments/s

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

SetSlowSpeedMode, MoveConstantVelocity, MoveRelativePosition and MoveToAbsolutePosition

Factory setting: 20.000 Increments/s

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 241

Examples:

Example in IL:

Declaration:

INST: SetVelocity;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1, udiValue := 20000)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, udiValue := 20000);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 242 User Manual PMCprimo SoftPLC

StopMotor
PMCprimo-Command: ST (Stop)

Function library: Positioning

Description:

The motor decelerates the specified ramp down to the velocity 0 with the function block
SetDeceleration (page 232). This function block can be used with each movement. PMCprimo
signals “S" during the deceleration process.

Illustration 32: End of movement with ST-Command

The function StopMotor acts only on the instantaneous selected axis. The function block
GlobalStop (page 178) acts axis overlapping.

Input variables:

bExecute (BOOL) The axis is stopped in case of a change from 0 to 1
 0 resets the function block and the output variables are
 set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)

Output variables:

bDone (BOOL) Axis has been stopped (True) or axis is braking at the moment (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

MoveConstantVelocity, MoveRelativePosition, ExecuteMap, InitialisePosition,
InitialisePositionBounds and MoveToAbsolutePosition

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 243

Examples:

Example in IL:

Declaration:

INST: StopMotor;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 244 User Manual PMCprimo SoftPLC

StopMotorToPosition
PMCprimo-Command: STnn (Stop)

Function library: Positioning

Description:

The motor stops at the specified position with the instantaneours velocity and the deceleration
ramp specified with the function block SetDeceleration (page 232). The command
SetMotorToPosition can be used with every movement. PMCprimo signals “S” during this process.
The target position must be ≤ SetPositionBound value.

Enhancement as of version 2.004:

In the past the command stop to position (example “diPosition = 0”) with mapping the active map
was only kept until the deceleration was started. Then a linear ramp (ramp depending from
“SetClutchTime” or “SetClutchLength”) was used to stop the slave. If the master was stopped in
that time then the slave still moved to the target position because the master slave link was
already opened. The slave moved therefore sometimes more than the master.

Now with “SetMapOptionsWord” bit 6 it is possible to maintain the master slave link also while
decelerating until the final target position is reached. This means that the slave is stopping as the
master and then waiting until the master is moving again until the slave reaches the position. The
setting of “CL” is always used. This means the bit 5 of “SetMapOptionsWord” (SetClutchTime /
SetClutchLength setting) (see page 127) is ignored because with command “SetClutchTime” it is
not possible to reach the target position.

Input variables:

bExecute (BOOL) The axis is stopped in case of a change from 0 to 1
 0 resets the function block and the output variables are
 set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
diPosition (DINT) The absolute target position in increments in the range of
 ±4.000.000
 Version 2.004 new range: ±2.000.000.000

Output variables:

bDone (BOOL) Axis has been stopped (True) or axis is braking at the moment (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

MoveConstantVelocity, MoveRelativePosition, ExecuteMap, InitialisePosition,
InitialisePositionBounds and MoveToAbsolutePosition

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 245

Examples:

Example in IL:

Declaration:

INST: StopMotorToPosition;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1, diPosition := 3000)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, diPosition := 3000);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 246 User Manual PMCprimo SoftPLC

14.15 Referencing

Activation and adjustment of the reference behaviour.

This chapter describes the commands and, therefore, the possibilities, which PMCprimo offers the
user regarding the referencing. Reference function blocks include the basic function of the
initialisation after power on as it is integrated in every positioning system, but also the possibility of
the cyclic referencing, which allows the user to adjust fluctuations and inaccuracies of the practical
position bound to the theoretical specification of the position bound.

The encoder position is stored immediately when recognising a reference input. This stored
position is compared with an expected reference position (cycle limit: -SBn / 0 / +SBn; see
function block SetPositionBound). The resulting difference is defined as reference error and the
absolute position can, if required, be corrected by this difference amount.

PMCprimo supports 2 kinds of reference signals:

A: The zero track of the encoder is connected with a fast reference input, which recognises itself
pulses with a length of 60ns. This reaction time is short enough, in order to recognise itself the
zero track in case of high-resolution encoders with their maximum velocity (definition >zero
track is reference input< with function DefineZeroMarkerInput).

B: Digital inputs as reference inputs. The inputs 1 to 4 (or 1 to 2 with ‘PMCprimo Drive‘) can be
defined with the function block DefineReferenceInput as reference inputs. With this reference
inputs external switching elements can be used with a minimum pulse length of 10 µs for the
referencing.

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 247

Illustration 33: Cooperation of the commands after detecting a reference signal.

 14 Function library primo.lib

Page 248 User Manual PMCprimo SoftPLC

Figure 34: Cooperation of the commands reference error correction

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 249

DefinePositionSnapshot

PMCprimo-Command: PS (Define position snapshot input)

Function library: Referencing

Description:

With this function block an encoder position snapshot can be stored with a digital input. The
stored value can be read with the function block DisplaySnapshotPosition (see page 63). Only fast
inputs for the definition can be used. The encoder position snapshot is only executed when the
reference function is activated with SetReferenceMode. The stored value of the encoder position
snapshot is independent from a reference offset set with SetReferenceOffset.

It is not possible to define additionally a position snapshot at this axis if a reference signal
(function block DefineReferenceInput or DefineZeroMarkerInput) is already been defined.

Input variables:

bExecute (BOOL) The input is defined in case of a change from 0 to 1
 0 resets the function block and the output variables are
 set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
usiBank (USINT) The input group (only 1 possible)
usiInput (USINT) The input:
 1 to 2 (PMCprimo Drive)
 1 to 4 (PMCprimo 2+2)
 1 to 4 (PMCprimo 16+)
usiPolarity (USINT) 0: falling edge - 1: rising edge

Output variables:

bDone (BOOL) Input has been defined (True) or module is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

DisplaySnapshotPosition and SetReferenceMode

Factory setting: Input not defined

 14 Function library primo.lib

Page 250 User Manual PMCprimo SoftPLC

Examples:

Example in IL:

Declaration:

INST: DefinePositionSnapshot;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1, usiBank := 1
 ,usiInput := 2, usiPolarity := 0)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, diPosition := 3000, usiBank := 1
 ,usiInput := 2, usiPolarity := 0);
bVarBOOL2:=Inst.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 251

DefineReferenceInput
PMCprimo-Command: DR (Define reference input)

Function library: Referencing

Description:

With this function block a digital input can be defined as a reference input. The axis can also be
virtual. As a result this input is determined for the cycle reference correction.

Input variables:

bExecute (BOOL) The input is defined in case of a change from 0 to 1
 0 resets the function block and the output variables are
 set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
usiBank (USINT) The input group (only 1 possible)
usiInput (USINT) The input:
 1 to 2 (PMCprimo Drive)
 1 to 4 (PMCprimo 2+2)
 1 to 4 adjustable with CD command (PMCprimo 16+)
 1 to 4 adjustable with CD command (PMCprimo Drive2)
usiPolarity (USINT) 0: falling edge - 1: rising edge

Output variables:

bDone (BOOL) Input has been defined (True) or module is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

SetReferenceMode, UndefineInput

Factory setting: Input not defined

 14 Function library primo.lib

Page 252 User Manual PMCprimo SoftPLC

Examples:

Example in IL:

Declaration:

INST: DefineReferenceInput;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1, usiBank := 1
 , usiInput := 2, usiPolarity := 0)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, usiBank := 1
 , usiInput := 2, usiPolarity := 0);
bVarBOOL2:=Inst.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 253

SetFilterOnReference
PMCprimo-Command: FR (Set filter on reference error)

Function library: Referencing

Description:

With this function block a filter can be set for a reference error. With SetFilterOnReference=0
there is no filter active. PMCprimo ignores reference errors which are bigger than
SetFilterOnReference completely in case of values SetFilterOnReference ≠0. The function block is
used for the filtering reference signals, which are outside of the permissible range to be expected.
This module SetFilterOnReference is independent on the function block
SetMaxReferenceCorrection (page 255). SetMaxReferenceCorrection limits the correction value
which is corrected in case of a reference error at the motor.

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables are
 set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
uiValue (UINT) The filter value from 0 up to 65.535 increments

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

SetReferenceMode and SetReferenceOptionsWord

Factory setting: 0 (switched-off)

 14 Function library primo.lib

Page 254 User Manual PMCprimo SoftPLC

Examples:

Example in IL:

Declaration:

INST: SetFilterOnReference;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1, uiValue := 300)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, uiValue := 300);
bVarBOOL2:=Inst.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 255

SetMaxReferenceCorrection
PMCprimo-Command: SR (Set maximum reference correction)

Function library: Referencing

Description:

This function block limits with values unequal to zero of the reference error which is corrected at
the motor to the set value. This function block can be used, to eliminate wrong reference signals
which are located far away from the position to be expected or allows a cyclic referring although
the reference signals do not coincide with the set position bound.

If PMCprimo recognises a reference signal the reference error is calculated as difference between
the zero point defined with the zero point and the zero position or the position bound.

In case the reference error is within the set value and Bit 0 of SetReferenceOptionsWord (page
272) is 1, the reference error is corrected at the motor.

In case the reference error is outside of the set limit value, the action depends on PMCprimo on
Bit 1 of the function SetReferenceOptionsWord and the value of the function
SetFilterOnReference (page 253):

In case Bit 1 is set from SetReferenceOptionsWord 0 and SetFilterOnReference to 0, the
reference error is not corrected and the error message “The reference error limit has been
exceeded!” is not issued. The reference error is completely ignored.

In case Bit 1 of SetReferenceOptionsWord 1 and SetFilterOnReference is unequal to 0, the
value of SetMaxReferenceCorrection is aligned as error maximum at the motor.

Is the reference error bigger than SetMaxReferenceCorrection, the value of the function block
SetRefereneErrorLimit (page 262) zero, and Bit 1 of SetReferenceOptionsWord 1 or
SetFilterOnReference unequal zero, the error signal “The reference error limit has been
exceeded” is issued. It the value of SetReferenceErrorLimit is unequal to 0, this error signal is
issued, when the reference error is bigger than the value of SetReferenceErrorLimit. With Bit 1 of
the function block SetErrorOptionsWord (page 188) it can be determined, if the motor shall be
switched-off additionally to this error signal.

 14 Function library primo.lib

Page 256 User Manual PMCprimo SoftPLC

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables are
 set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
uiValue (UINT) The value is written from 0 to 65.535 increments

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

SetReferenceOptionsWord, SetReferenceErrorLimit and SetFilterOnReference

Factory setting: 0 (switched-off)

Examples:

Example in IL:

Declaration:

INST: SetMaxReferenceCorrection;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1, uiValue := 1000)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, uiValue := 1000);
bVarBOOL2:=Inst.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 257

SetReferenceAcceleration
PMCprimo-Command: RC (Set reference error adjustment acceleration)

Function library: Referencing

Description:

The adjustment of a reference error results in a new setpoint position for the slave axis.
PMCprimo can determine the acceleration ramp for obtaining the adjustment velocity by the aid of
the function block. The parameter is indicated in increments / second2. The parameter is to be set
at the slave axis. The value 0 means a jump of the compensation velocity.

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables are
 set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
udiValue (UDINT) The value from 0 to 2.000.000 increments/s²

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

SetReferenceCorrectionVelocity

Examples:

Example in IL:

Declaration:

INST: SetReferenceAcceleration;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1, udiValue := 500000)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, udiValue := 500000);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 258 User Manual PMCprimo SoftPLC

SetReferenceAdvanceFactor
PMCprimo-Command: RN

Function library: Referencing

Description:

This function block is used, to realise a shift dependent on the velocity of the referencing signal.
This can be necessary if the used sensor switches only slowly and, therefore, the measured
position depends on the velocity.

The calculation occurs according to the following formula (calculation as with PA and BA):

Displacement =
demand velocity * RN

 65536

The value is a time which results from the calculation. 1 ms corresponds to the value 64. As a
result the shift can be adjusted in steps of 15,625 micro seconds.

The average of the setpoint velocity is used for the calculation. The time interval set with the
function block SetVelocityAveragingTime is used.

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables are
 set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
uiValue (UINT) The value from 0 to 65535
 As of version 2.005 new range: ±65.535

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

SetVelocityAveragingTime

Factory setting: 0 (switched-off)

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 259

Examples:

Example in IL:

Declaration:

INST: SetReferenceAdvanceFactor;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1, uiValue := 100)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, uiValue := 100);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 260 User Manual PMCprimo SoftPLC

SetReferenceCorrectionVelocity
PMCprimo-Command: RV (Set reference correction velocity)

Function library: Referencing

Description:

The correction of a reference error requires a temporary velocity modification during the execution
of a movement. PMCprimo can limit the maximum velocity during the correction of a reference
error. The correction of a reference error is executed as step function when indicating zero. The
velocity is indicated in % of the actual demand velocity. If a reference error is detected with on a
stopped axis, the error is compensated with the velocity of SetSlowSpeed (page 236). Following
connection is valid for values unequal 0:

Velocity modification = instantaneous velocity x set value/100

If PMCprimo recognises a reference signal before the existing reference error has been aligned
PMCprimo signals “reference correction overrun”. This error can occur if
SetMapAdjustmentVelocity is too small and very short position bounds. If Bit 2 of the function
block SetErrorOptionsWord (page 188) is set, PMCprimo switches off the motor in case of an
error.

The acceleration for executing a reference error (Illustration picture below) can be set with the
function block SetReferenceAcceleration.

Illustration 35: Reference error correction with factor

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 261

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables are
 set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
usiValue (USINT) The value from 0 to 200 percent
As of Primo_V2_006.lib: udiValue (UDINT)

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

SetReferenceAcceleration and SetSlowSpeed

Factory setting: 100 percent

Examples:

Declaration:

INST: SetReferenceCorrectionVelocity;
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1, uiValue := 100)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, uiValue := 100);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 262 User Manual PMCprimo SoftPLC

SetReferenceErrorLimit
PMCprimo-Command: LR (Set reference error limit)

Function library: Referencing

Description:

With this function block a reference error limit can be set in increments. If PMCprimo recognises a
reference error which is bigger than the set value, the error signal "Reference error outside limits”
is issued. SetReferenceErrorLimit is independent on SetMaxReferenceCorrection (page 255) and
SetFilterOnReference. It can be determined with Bit 1 of the function block SetErrorOptionsWord
(page 188), if the motor shall be switched off additionally to this error signal.

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
udiValue (UINT) The reference error limit from 0 (switched-off) to 65535
 Increments
Ab Primo_V2_006.lib: uiValue (UINT)

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

SetErrorOptionsWord

Factory setting: 0 (switched-off)

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 263

Examples:

Declaration:

INST: SetReferenceErrorLimit
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1, udiValue := 500)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, udiValue := 500);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 264 User Manual PMCprimo SoftPLC

SetReferenceFalseHighLimit
PMCprimo-Command: FH (Set reference input true high limit)

Function library: Referencing

Description:

This function block acts in connection with the function blocks SetReferenceFalseLowLimit,
SetReferenceTrueHighLimit and SetReferenceTrueLowLimit.

These four modules limit the travel length of a reference input defined with the module
DefineReferenceInput. They allow that PMCprimo only reacts on a reference input, when the
signal is recognised within the specified limits. The reference input is evaluated only then as valid,
if it results between the values of SetReferenceFalseLowLimit and SetReferenceFalseHighLimit in
untrue and afterwards between the values of SetReferenceTrueLowLimit and
SetReferenceTrueHighLimit in true. The input is only evaluated as valid reference input by
PMCprimo, when it has changed from true to untrue. However, the reference error for the
initialisation and the cyclic reporting is determined with the rising edge (change from untrue to
true) of the input signal. The values are given in increments.

An inspection of the limit values for reference input true does not occur with indication of zero
SetReferenceTrueHighLimit and SetReferenceTrueLowLimit. An inspection of the limit values for
a reference input untrue does not occur with indication of zero for SetReferenceFalseHighLimit
and SetReferenceFalseLowLimit. With an indication of uiValue=0 at all four parameters an
inspection of the limit values does not occur.

Summary:

A reference input is evaluated as such, if

• SetReferenceTrueLowLimit <=distance with reference input (DefineReferenceInput) true <=
SetReferenceTrueHighLimit and

• SetReferenceFalseLowLimit <= length of travel with reference input (DefineReferenceInput)
untrue <= SetReferenceFalseHighLimit

Illustration 36: Limit values for the evaluation reference input

This possibility is used, to be able to filter a valid reference signal from a spectrum of signals of
the reference sensor. This filter characteristic is especially suitable for printing and registration
applications.

These functions are enabled with the function blocks SetReferenceFilterOptionWord (Bit 0).

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 265

 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
uiValue (UINT) The value from 0 to 65535 increments
 As of version 2.004 new range: ±2.000.000.000
Ab Primo_V2_006.lib: udiValue (UDINT)

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

SetReferenceFilterOptionWord, SetReferenceFalseLowLimit, SetReferenceFalseHighLimit,
SetReferenceTrueLowLimit und SetReferenceTrueHighLimit

Factory setting: 0 (switched-off)

Examples:

Declaration:

INST: SetReferenceFalseHighLimit
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1, uiValue := 500)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, uiValue := 500);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 266 User Manual PMCprimo SoftPLC

SetReferenceTrueHighLimit
PMCprimo-Command: ZH (Set reference input true high limit)

see SetReferenceFalseHighLimit on page 264

SetReferenceTrueLowLimit
PMCprimo-Command: ZL (Set reference input true low limit)

see SetReferenceFalseHighLimit on page 264

SetReferenceFalseLowLimit
PMCprimo-Command: FL (Set reference input true low limit)

see SetReferenceFalseHighLimit on page 264

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 267

SetReferenceFilterOptionWord
PMCprimo-Command: FW (Set reference filter options word)

Function library: Referencing

Description:

With this function block the options are pre-set for a reference filter of PMCprimo (Bit 0 stands for
input or output on the right and Bit 7 on the left side.

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
usiControlword (USINT) The setting with following meaning:

Bit 0: This Bit activates the parameter
SetReferenceFalseLowLimit, SetReferenceFalseHighLimit,
SetReferenceTrueLowLimit und SetReferenceTrueHighLimit.

0: Parameter not active

1: Parameter active.

Bit 1: This Bit determines the reference position of the function
SetReferencePosition (page 274) in PMCprimo.

0: PMCprimo uses the relative position to the reference
signal

1: PMCprimo uses the absolute position of the position
counter.

Bit 2: not occupied

up to

Bit 7: not occupied.

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

SetReferenceFalseLowLimit, SetReferenceFalseHighLimit, SetReferenceTrueLowLimit,
SetReferenceTrueHighLimit und SetReferencePosition

Factory setting: 0

 14 Function library primo.lib

Page 268 User Manual PMCprimo SoftPLC

Examples:

Declaration:

INST: SetReferenceFilterOptionWord
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1, usiControlword := 2#11)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, usiControlword := 2#11);
bVarBOOL2:=Inst.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 269

SetReferenceHoldoffTime
PMCprimo-Command: RH (Set reference holdoff time)

Function library: Referencing

Description:

With this function block a debouncing time can be set for a reference signal. PMCprimo only
accepts the next reference signal after timeout of this switch-off delay.

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
usiValue (USINT) The filter time from 0 up to 127 milliseconds
Ab Primo_V2_006.lib: uiValue (UINT)

Output variables:

bDone (BOOL) Value has been written (True) or it is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

DefineReferenceInput

Factory setting: 0 (switched-off)

Examples:

Declaration:

INST: SetReferenceHoldoffTime
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1, usiValue := 5)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, usiValue := 5);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 270 User Manual PMCprimo SoftPLC

SetReferenceMode
PMCprimo-Command: RM (Set continuous reference mode on/off)

Function library: Referencing

Description:

Permissible values for n: 0 and 1
Factory setting: 0

This function block effects that with SetReferenceMode=1, the zero track as reference input (with
function block DefineZeroMarkerInput page 69 defined) all defined reference inputs (with
DefineReferenceInput page 251 defined) and all position snapshots of the encoder position of the
inputs defined with the DefinePositionSnapshot (page 249) are registered in every cycle.

Input variables:

bExecute (BOOL) The mode is set in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
usiValue (USINT) The switch for referencing (0 or 1)

Output variables:

bDone (BOOL) Mode activated (True) or module is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

DefineZeroMarkerInput, DefineReferenceInput and DefinePositionSnapshot

Factory setting: 0 (switched-off)

Examples:

Declaration:

INST: SetReferenceMode
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1, usiValue := 1)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, usiValue := 1);
bVarBOOL2:=Inst.bDone;

Example in FBD:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 271

SetReferenceOffset
PMCprimo-Command: RF Set reference offset)

Function library: Referencing

Description:

With this function block a reference offset can be set. This is the position, at which PMCprimo
expects a reference signal. The difference between the actual measured reference position and
offset obtains the reference error to be corrected (see DisplayReferenceError page 58).

The set value is also used for the function blocks InitialisePosition and InitialisePositionBounds. In
this case the position counter is set to the value of the reference offset when recognising the
reference signal.

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
diValue (DINT) The reference offset in the range of ± 4.000.000 increments

Output variables:

bDone (BOOL) Value is written (True) or module is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

DisplayReferenceError, InitialisePosition and InitialisePositionBounds

Factory setting: 0 increments

Examples:

Declaration:

INST: SetReferenceOffset
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1, diValue := 1000)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, diValue := 1000);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 272 User Manual PMCprimo SoftPLC

SetReferenceOptionsWord

PMCprimo-Command: RW (Set reference options word)

Function library: Referencing

Description:

With this function block a function selection is done and the reference behaviour of PMCprimo is
pre-set (Bit 0 stands with input or output on the right and Bit 7 on left side)

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or
 Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
usiControlword (USINT) The setting with following meaning:

Bit 0: This Bit activates the cyclic homing, if it is activated with the RM-
command.

0: Reference correction not active.

1: Reference correction active.

Bit 1: This Bit determines the reaction of PMCprimo, if the reference error
to be corrected is bigger than the permissible maximum value with
reference error correction (Function SetMaxReferenceCorrection
page 255).

0: PMCprimo completely ignores a reference error. Only reference
signals within the window are evaluated and corrected.

1: PMCprimo executes a reference error correction with the permissible
maximum value and provides the error signal “RL”.

Bit 2: This Bit activates a permissible position for correction of a reference
error (setting with the function SetReferencePosition page 274).

0: A position is not defined with correction of a reference error. The
correction is immediately executed when recognising a reference
input.

1: Position with reference error correction active.

Bit 3: This Bit prevents the movement back to the reference signal with
initialisation (Function InitialisePosition page 214).

0: Movement back to the reference signal with initialisation is executed.

1: Movement back to the reference signal with initialisation is not
executed.

Bit 4: Version 1.008 or higher:
This bit defines the parameter of the function
SetReferenceCorrectionVelocity (see page 260)

0: RV sets the velocity for the reference correction

1: RV sets the distance of the reference correction. With this function
the reference error is spread out to a defined distance. Bit 6 of RW
must be set if bit 4 is set. If not then a warning is given out and bit 6 is
set automatic.

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 273

Bit 5: This Bit determines, if a reference error correction is only executed in
the position indication or also at the motor. This Bit does not have any
effect at a slave axis with active position allocation, as each reference
error is corrected at the slave axis in this case.

0: Motor position and position indication are corrected.

1: Only the position indication is corrected.

Bit 6 Version 1.008 or higher:
This bit defines the parameter of the function
SetReferenceAcceleration (see page 257)

0: RC sets the acceleration for the reference correction

1: RC sets an acceleration distance.

Bit 7: not used

Output variables:

bDone (BOOL) Value is written (True) or module is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

SetReferenceMode, SetMaxReferenceCorrection, SetReferencePosition and InitialisePosition

Factory setting: 0

Examples:

Declaration:

INST: SetReferenceOptionsWord
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1, usiControlword := 2#10)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, usiControlword := 2#10);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 274 User Manual PMCprimo SoftPLC

SetReferencePosition
PMCprimo-Command: RJ (Set deferred reference adjustment position)

Function library: Referencing

Description:

With this function block the user can define the position within the cycle limits, at which PMCprimo
may correct a stored reference error. In case the value is zero, then PMCprimo immediately
executes the correction of the reference error. The position, which can be specified with this
command, must be activated with Bit 2 of the pre-adjustment of the reference behaviour
SetReferenceOptionsWord (page 272). Only a positive position may be indicated.

In case a value is specified n-times bigger than SetPositionBound (page 133) or
SetReferenceRepeatLength (page 278), if used, the reference error correction is executed,
displaced by n-cycles. Bit 1 of SetReferenceFilterOptionWord (page 267) must be set to 1, as a
relative position indication does not make any sense in this case.

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
diValue (DINT) The reference position in the range of ± 4.000.000 increments

Output variables:

bDone (BOOL) Value is written (True) or module is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

SetReferenceOptionsWord, SetPositionBound, SetReferenceRepeatLength and
SetReferenceFilterOptionWord

Factory setting: 0 Increments

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 275

Examples:

Declaration:

INST: SetReferencePosition
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1, diValue := 2000)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, diValue := 2000);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 276 User Manual PMCprimo SoftPLC

SetReferencePositionAtOtherPosition
PMCprimo-Command: RK

Function library: Referencing

Description:

This function block effects that the reference error correction of the actual axis is executed at the
position of another axis. The actual axis waits until the other axis has reached the specified
position and starts only then with the reference error correction. The function block
SetReferencePosition (page 274) is not effective any more on the actual axis.

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
usiAtNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiAtChannel (USINT) The axis number from 1 to n (depending on the system)
diValue (DINT) The position of the other axis in the range of ± 4.000.000 increments

Output variables:

bDone (BOOL) Value is written (True) or module is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

SetReferenceOptionsWord, SetReferenceMode

Factory setting: not defined

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 277

Examples:

Declaration:

INST: SetReferencePositionAtOtherPosition
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, usiAtNode := 0,
usiAtChannel := 2, diPosition := 3000)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, usiAtNode := 0, usiAtChannel := 2,
 diPosition := 3000);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 278 User Manual PMCprimo SoftPLC

SetReferenceRepeatLength
PMCprimo-Command: RL (Set reference repeat length)

Function library: Referencing

Description:

With this function block a reference position bound can be set. The reference position bound
indicates the position, at which PMCprimo expects a reference signal. If zero is set, then
PMCprimo expects a reference signal at the cycle limit (set with the function block
SetPositionBound page 133).

Application example:

The position bound of the machine amounts to 10 000 increments and the reference position
bound is set with 2 500 increments. As a result PMCprimo corrects 4 times a reference error
within a position bound of the machine.

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
udiValue (UDINT) The value of 0 to 4.000.000 increments, 0 switched-off
 As of version 2.004 new range: 0 to 2.000.000.000

Output variables:

bDone (BOOL) Value is written (True) or module is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

SetPositionBound

Factory setting: 0 (switched-off)

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 279

Examples:

Declaration:

INST: SetReferenceRepeatLength
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1, udiValue := 5000)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, udiValue := 5000);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 280 User Manual PMCprimo SoftPLC

SetReferenceTimeout
PMCprimo-Command: RT (Set reference timeout)

Function library: Referencing

Description:

With this function block a monitoring can be activated for reference signals. If a value unequal to
zero is set, reference signals can get lost, before PMCprimo issues the error signal „reference
timeout“ If Bit 0 of the module SetErrorOptionsWord (page 188) is set to 1, PMCprimo
simultaneously switches off the controller enable (motor is de-energised). Herewith the
initialisation (InitialisePosition, InitialisePositionBounds page 214, 216) can also be monitored.
The monitoring is only used for signals which are not filtered out (function block
SetFilterOnReference page 253).

Input variables:

bExecute (BOOL) The value is written in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
usiValue (USINT) The number of signals, which can get lost from 0 (switched-off)
 to 255

Output variables:

bDone (BOOL) Value is written (True) or module is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

SetErrorOptionsWord and SetFilterOnReference

Factory setting: 0 (switched-off)

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 281

Examples:

Declaration:

INST: SetReferenceTimeout
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel := 1, usiValue := 4)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel := 1, usiValue := 4);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 282 User Manual PMCprimo SoftPLC

UndefineInput
PMCprimo-Command: UI (Undefine input definition)

Function library: Referencing

Description:

With this function block the user resets a defined input function in PMCprimo, independent of the
fact which input function was defined up to now.

Input variables:

bExecute (BOOL) The input function is reset in case of a change from 0 to 1
 0 resets the function block and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiBank (USINT) The input group from 1 to 3
usiInput (USINT) The input from 1 to 8

Output variables:

bDone (BOOL) Definition reset (True) or module is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

DefinePositionSnapshot and DefineReferenceInput

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 283

Examples:

Declaration:

INST: UndefineInput
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiBank:= 1, usiInput:= 3)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiBank:= 1, usiInput:= 3);
bVarBOOL2:=Inst.bDone;

Example in FBD:

 14 Function library primo.lib

Page 284 User Manual PMCprimo SoftPLC

14.16 Tension Control

With the web tension control (tension), winding-up processes can be realised for example.

The value of the analogue input is decisive for the control loop of the web tension. The value of
the analogue input is read at regular intervals (real time) and from that a transmission ratio
between the master and slave axes is calculated. The algorithm for this calculation is:

i = SM + SM x [AP ei + AI Σei + AD (ei-ei-1)]
i = Transmission ratio Master/Slave
SM = Set transmission ratio (SM-command)
AP = Proportional factor
AI = Integral factor
AD = Differential factor
ei = Web tension distance (= set web tension- actual web tension)

The dynamic behaviour of the web tension depends on these constant factors and on the
mechanical behaviour of the driven machine. The setting of these factors is imperative for the
achievement of an optimum control behaviour.

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 285

CalculateInitialRatio

PMCprimo-Command: CR (Calculate initial ratio from analogue range distances)

Function library: Tension

Description:

As soon as the function module is started, PMCprimo calculates the initial transmission ratio from
the values of the slave and master axes specifed with SetAnalogueRangeDistance and
SetAnalogueMasterRangeDistance. The calculation is executed with both measuring values with
SetAnalogueRangeDistance (Slave)/SetAnalogueMasterRangeDistance (Master) in the same way
as with the values of SetPositionBound by the function SetMapScaleFromBounds.

In case the automatic measuring of the analogue distance is released at the master and slave
axes, the function module ExecuteMap executes an automatic measuring of the analogue
distance at both axes.

Input variables: :

bExecute (BOOL) The transmission ratio is calculated in case of a change from 0 to 1
 0 resets the function module and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)

Output variables:

bDone (BOOL) Transmission ratio calculated (True) or module is still under operation
(False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

SetAnalogueRangeDistance and SetAnalogueMasterRangeDistance

 14 Function library primo.lib

Page 286 User Manual PMCprimo SoftPLC

Examples:

Declaration:

INST: CalculateInitialRatio
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel:= 1)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel:= 1);
bVarBOOL2:=Inst.bDone;

Example in FDB:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 287

ExecuteAnalogueDistanceInit
PMCprimo-Command: XR (Execute analogue range distance initialisation)

Function library: Tension

Description:

The function "Initialisation of the transmission ratio with analogue distances" can manually be
started. The measuring results are registered in the SetAnalogueRangeDistance parameter.

The command is always set down at the slave axis.

The "Initialisation of the transmission ratio with analogue distances” functions as follows:

The motor moves in the same direction with the velocity (function module SetSlowSpeed), as with
the start-up of the web tension demand value, the position stores and stopps until an analogue
limit value has been exceeded. Subsequently the motor moves in the opposite direction, these
second position stores until an analogue value has been exceeded again and stores the distance
between these both values as value of SetAnalogueRangeDistance for the slave.

The Bits 4 and 5 in the function SetAnalogueControlWord release the "Initialisation of the
transmission ratio with analogue distances”, i.e. this function is automatically executed when the
position allocation is activated with ExecuteMap. The determined transmission ratio
SetAnalogueRangeDistance (Slave)/SetAnalogueMasterRangeDistance (Master) is used as initial
transmission ratio (see function module CalculateInitialRatio).

Input variables:

bExecute (BOOL) The transmission ratio is determined in case of a change from 0 to 1
 0 resets the function module and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
usiMasterSlave (USINT) 0: distance is measured on slave, 1: distance is measured on master

Output variables:

bDone (BOOL) Transmission ratio determined (True) or module is still under operation
 (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

SetAnalogueRangeDistance, SetAnalogueMasterRange Distance and CalculateInitialRatio

 14 Function library primo.lib

Page 288 User Manual PMCprimo SoftPLC

Examples:

Declaration:

INST: ExecuteAnalogueDistanceInit
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel:= 1, usiMasterSlave:=0)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel:= 1, usiMasterSlave:=0);
bVarBOOL2:=Inst.bDone;

Example in FDB:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 289

SetAnalogueControlMode
PMCprimo-Command: AM (Set analogue control mode)

Function library: Tension

Description:

This function module releases an analogue control. The value 1 means to release web tension
control , 0 blocks the analogue control. The analogue control can be released or blocked at any
time.

The activation of a position allocation with the function module ExecuteMap initiates various
actions at the slave axis. In case of an enabled web tension control these actions are defined by
pre-setting of the web tension with the function module SetAnalogueControlWord. The Bits 0, 1
and 4 of the module SetMapOptionsWord are compulsory set to 1 by the release of the web
tension control. It is a must for the function of the software clutch and the velocity ratio in the web
tension control circuit.

In case Bit 4 or Bit 5 of SetAnalogueControlWord are set to 1, PMCprimo automatically initialises
the transmission ratio, before the position allocation is activated for the web tension control.
PMCprimo measures the distance between both positions, where the limit values for the analogue
input are exceeded or fall below, by moving the master/slave axes. The transmission with these
measured values obtains a good estimation for the transmission ratio with an activation of the web
tension control. This values allows PMCprimo, to achieve the transmission ratio to be driven
considerably faster than using the pre-set transmission ratio (SetScaleMapping), especially then,
when the machine does not start from the initial position.

Winding-up or unwinding is an example for this application. Normally the machine starts with a full
or empty coil and the initial transmission ratio is specified by the function module
SetScaleMapping. A restart after an interruption takes place smoothly, as a transmission ratio
determined at last is used for the start. If the machine, however, is started with partially winded or
unwinded coils with unknown diameters, the transmission ratio normally specified is not suitable
for the new coil diameter. The machine can be started by this automatic initialisation of the
transmission ratio at the beginning of the web tension control without a big settling process of the
web tension control circuit of the pre-set ratio to the actually required transmission ratio.

 14 Function library primo.lib

Page 290 User Manual PMCprimo SoftPLC

Input variables:

bExecute (BOOL) The mode of operation is set in case of a change from 0 to 1
 0 resets the function module and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or
 Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
usiMode (USINT) The mode of operation: 0 switched off, 1 switched on

Output variables:

bDone (BOOL) Mode of operation set (True) or module is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

SetAnalogueControlWord and ExecuteMp

Factory setting: 0 (switched off)

Examples:

Declaration:

INST: SetAnalogueControlMode
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel:= 1, usiMode:=1)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel:= 1, usiMode:=1);
bVarBOOL2:=Inst.bDone;

Example in FDB:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 291

SetAnalogueControlSetPoint
PMCprimo-Command: AC (Set analogue control setpoint)

Function library: Tension

Description:

With this function module the setpoint value of the analogue control is specified. The control
deviation is calculated from the difference between the setpoint value and the actual value
measured with the analogue input.

Input variables:

bExecute (BOOL) The setpoint is set in case of a change from 0 to 1
 0 resets the function module and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or
 Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
iSetPoint (INT) The web tension setpoint value in the range of ±2047
 (corresponds to ±10V)

Output variables:

bDone (BOOL) Setpoint set (True) or module is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

SetAnalogueControlWord, SetAnalogueControlMode and Execute Map

Factory setting: 0

Examples:

Declaration:

INST: SetAnalogueControlSetPoint
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel:= 1, iSetPoint:=100)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel:= 1, iSetPoint:=100);
bVarBOOL2:=Inst.bDone;

Example in FDB:

 14 Function library primo.lib

Page 292 User Manual PMCprimo SoftPLC

SetAnalogueControlWord
PMCprimo-Command: AW (Set analogue control options word)

Function library: Tension

Description:

With this function module the behaviour of the analogue control is defined. (Bit 0 is the right and
bit 7 the left one)

Bit 0: This Bit determines the behaviour of the slave axis with activation of a position allocation
with Execute Map.

0: The slave axis immediately goes into the condition of the active position allocation
under use of the software clutch SetClutchTime to the transmission ration specified by
the web tension.

1: The slave axis drives with the jog speed (set with SetSlowSpeed) until the web tension
achieves the web tension setpoint value and afterwards goes into the condition of the
active position allocation.

Bit 1: Reserved.

Bit 2: This Bit determines the mode of operation of the integral factor. The web tension depends
on the movement of the master and slave axes, as the output of the control loop of the
velocity ratio is between both axes. If the master axis stands, then also the slave axis
stands and a control of the velocity ratio is possible. In this case it is necessary, to block
the I-part, to prevent that a big web tension distance adds itself and effects a step
response during start of the motor.

0: The integral factor is blocked.

1: The integral factor is released.

Bit 3: This Bit determines, with which transmission ratio the web tension control is activated.

0: The initial transmission ratio is the value of the module SetScaleMapping.

1: The initial transmission ratio is the actual transmission ratio. Normally it is, the
instantaneous transmission ratio determined the last before stop of the slave axis.

Bit 4: This Bit releases the automatic initialisation between the upper and lower limit value at the
slave axis during activation of a position allocation with a web tension control (see also
SetAnalogueRangeDistance and ExecuteAnalogueDistanceInit for detail information).

0: The automatic initialisation of the transmission ratio with the upper and lower limit
values is not released at the slave axis.

1: The automatic initialisation of the transmission ratio with the upper and lower limit
values is released at the slave axis.

Bit 5: This Bit releases the automatic initialisation between the upper and lower limit values at the
master axis during activation of a position allocation with web tension control (see also
SetAnalogueRangeDistance and ExecuteAnalogueDistanceInit for Detail information). This
function is also possible, when the slave and master axes are in a linked system on
different controls.

0: The automatic initialisation of the transmission ratio with the upper and lower
limit value is not released at the master axis.

1: The automatic initialisation of the transmission ratio with the upper and lower
limit value is released at the master axis.

Bit 6: This Bit determines the starting direction of the web tension setpoint value, when

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 293

Bit 0 is set to 1 and the web tension control is released.

0: The starting direction is the same as the sign of the web tension distance.

1: The starting direction is opposite the sign of the web tension distance.

Bit 7: This Bit determines the sign of the analogue control.

0: An increase of the error signal (web tension distance) effects a voltage rise the
setpoint output.

1: An increase of the error signal (web tension distance) effects a voltage
reduction at the setpoint output.

Input variables:

bExecute (BOOL) The value is set in case of a change from 0 to 1
 0 resets the function module and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
usiControlword (USINT) The control word for setting the behaviour:

Output variables:

bDone (BOOL) Setpoint set (True) or module is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

SetAnalogueControlMode and ExecuteMap, SetScaleMapping, SetClutchTime and
SetSlowSpeed

Factory setting: 0

 14 Function library primo.lib

Page 294 User Manual PMCprimo SoftPLC

Examples

Declaration:

INST: SetAnalogueControlWord
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel:= 1, usiControlWord:=2#1)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel:= 1, usiControlWord:=2#1);
bVarBOOL2:=Inst.bDone;

Example in FDB:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 295

SetAnalogueDifferentialGain
PMCprimo-Command: AD (Set analogue differential control gain)

Function library: Tension

Description:

With this function module a differential factor of the control algorithm of the analogue control is
set. This factor uses the differential of the actual value distance which shows the control deviation
of the system. This factor is useful with very fast modifications of the control deviation and acts in
a damping way on the analogue control.

Input variables:

bExecute (BOOL) The value is set in case of a change from 0 to 1
 0 resets the function module and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
uiGain (UINT) The control factor from 0 up to 65535

Output variables:

bDone (BOOL) Value is set (True) or module is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions

SetAnalogueIntegralGain, SetAnalogueProportianalGain und SetAnalogueControlMode

Factory setting: 0 (switched off)

Examples:

INST: SetAnalogueDifferentialGain
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel:= 1, uiGain:=100)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel:= 1, uiGain:=100);
bVarBOOL2:=Inst.bDone;

Example in FDB:

 14 Function library primo.lib

Page 296 User Manual PMCprimo SoftPLC

SetAnalogueInputHighLimit
PMCprimo-Command: AH (Set analogue input high limit)

Function library: Tension

Description:

With this funciton module a permissible upper limit can be set for the analogue input. In case the
value of the analogue input exceeds this value, PMCprimo issues a corresponding error signal. If
the Bit 3 of the module SetErrorOptionsWord is set to 1, the exceeding of the upper limit is
evaluated as motor-OFF-error.

Input variables:

bExecute (BOOL) The value is set in case of a change from 0 to 1
 0 resets the function module and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
diLimit (DINT) The limit value of –2.147.483.648 up to 2.147.483.647
 (2047 corresponds to 10V, it the analogue input is used)

Output variables:

bDone (BOOL) Value is set (True) or module is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions

SetAnalogueInputLowLimit und SetAnalogueControlMode

Factory setting: 2000

Examples:

Example in IL:

INST: SetAnalogueInputHighLimit
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel:= 1, diLimit:=1000)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel:= 1, diLimit:=1000);
bVarBOOL2:=Inst.bDone;

Example in FDB:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 297

SetAnalogueInputLowLimit
PMCprimo-Command: AL (Set analogue input low limit)

Function library: Tension

Description:

With this funciton module a permissible lower limit can be set for the analogue input. In case the
value of the analogue input falls below of this value, PMCprimo issues a corresponding error
signal. If the Bit 3 of the module SetErrorOptionsWord is set to 1, the exceeding of the lower limit
is evaluated as motor-OFF-error.

Input variables:

bExecute (BOOL) The value is set in case of a change from 0 to 1
 0 resets the function module and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
diLimit (DINT) The limit value of –2.147.483.648 up to 2.147.483.647
 (2047 corresponds to 10V, it the analogue input is used)

Output variables:

bDone (BOOL) Value is set (True) or module is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions

SetAnalogueInputHighLimit und SetAnalogueControlMode

Factory setting: -2000

Examples:

INST: SetAnalogueInputLowLimit
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel:= 1, diLimit:=-1000)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel:= 1, diLimit:=-1000);
bVarBOOL2:=Inst.bDone;

Example in FDB:

 14 Function library primo.lib

Page 298 User Manual PMCprimo SoftPLC

SetAnalogueIntegralGain
PMCprimo-Command: AI (Set analogue integral control gain)

Function library: Tension

Description:

With this function module the integral factor of the control algorithm of the analogue control is set.
When using an integral factor PMCprimo integrates the control deviation by adding the actual
error to a consecutive overall error. The integral factor is mainly used for winding and unwinding
applications with web tension control.

If the integral component is used you have to observe that during standstill of the axis this one is
switched off with the function module SetAnalogueControlWord, as otherwise it is started with an
incorrect transmission ratio when restarting and the material to be unwinded is damaged.

Input variables:

bExecute (BOOL) The value is set in case of a change from 0 to 1
 0 resets the function module and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
uiGain (UINT) The control factor from 0 to 65535

Output variables:

bDone (BOOL) Value is set (True) or module is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions

SetAnalogueDifferentialGain, SetAnalogueProportianalGain und SetAnalogueControlMode

Factory setting: 0 (switched off)

Examples:

INST: SetAnalogueIntegralGain
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel:= 1, uiGain:=50)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel:= 1, uiGain:=50);
bVarBOOL2:=Inst.bDone;

Example in FDB:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 299

SetAnalogueMasterRangeDistance
PMCprimo-Command: MM (Define master axis analogue range distance)

Function library: Tension

Description:

This function module determines the distance between the upper and lower limits of the master
axis, called master analogue distance. It allows, to specify the value of the analogue distance for a
master axis.

Input variables:

bExecute (BOOL) The value is set in case of a change from 0 to 1
 0 resets the function module and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
uiDistance (UINT) The distance from 0 to 65535

Output variables:

bDone (BOOL) Value is set (True) or module is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

SetAnalogueRangeDistance und SetAnalogueControlMode

Factory setting: 256 increments

Examples:

INST: SetAnalogueMasterRangeDistance
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel:= 1, uiDistance:=5000)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel:= 1, uiDistance:=5000);
bVarBOOL2:=Inst.bDone;

Example in FDB:

 14 Function library primo.lib

Page 300 User Manual PMCprimo SoftPLC

SetAnalogueProportianalGain
PMCprimo-Command: AP (Set analogue control proportional gain)

Function library: Tension

Description:

With this function module the proportional factor of the control algorithm is set for the analogue
control. A big value of the AP-factor allows a short reaction time and an exact analogue control.
Therefore, the AP-factor should be set as high as possible without generating an overshoot.

Input variables:

bExecute (BOOL) The value is set in case of a change from 0 to 1
 0 resets the function module and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
uiGain (UINT) The control factor from 0 to 65535

Output variables:

bDone (BOOL) Value is set (True) or module is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions

SetAnalogueDifferentialGain, SetAnalogueIntegralGain und SetAnalogueControlMode

Factory setting: 10.000

Examples:

INST: SetAnalogueProportianalGain
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel:= 1, uiGain:=1000)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel:= 1, uiGain:=1000);
bVarBOOL2:=Inst.bDone;

Example in FDB:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 301

SetAnalogueRangeDistance
PMCprimo-Command: AR (Define analogue range distance)

Function library: Tension

Description:

This function module determines the distance between the upper and lower limits of the analogue
input of the instantaneous selected axis, called analogue distance. It allows, to specify the value
of the analogue distance for a slave axis.

Input variables:

bExecute (BOOL) The value is set in case of a change from 0 to 1
 0 resets the function module and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
uiDistance (UINT) The distance at the slave from 0 to 65535 increments

Output variables:

bDone (BOOL) Value is set (True) or module is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Connected functions:

SetAnalogueMasterRangeDistance und SetAnalogueControlMode

Factory setting: 256 increments

Examples:

INST: SetAnalogueMasterRangeDistance
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel:= 1, uiDistance:=6000)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel:= 1, uiDistance:=6000);
bVarBOOL2:=Inst.bDone;

Example in FDB:

 14 Function library primo.lib

Page 302 User Manual PMCprimo SoftPLC

14.17 Wait

With the wait command it is possible to wait for a specific motor status or position.

WaitEndState
PMCprimo-Command: WE (Wait end state)

Function library: Wait

As of version 2.004 available

Description:

This command ends the current wait state as completed normally. This allows the user to escape
from a wait state

Input variables:

bExecute (BOOL) The value is set in case of a change from 0 to 1
 0 resets the function module and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)

Output variables:

bDone (BOOL) No more waiting (True) or module is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Examples:

INST: WaitEndState
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel:= 1)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel:= 1);
bVarBOOL2:=Inst.bDone;

Example in FDB:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 303

WaitForAbsolutePosition
PMCprimo-Command: WA (Wait for absolute position)

Function library: Wait

Available as of version 2.000

Description:

This function block tells PMCprimo to wait until the current channel reaches the given absolute
position . The position is specified in increments.

Input variables:

bExecute (BOOL) The value is set in case of a change from 0 to 1
 0 resets the function module and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
diValue (UINT) Absolute position for waiting.

Output variables:

bDone (BOOL) No more waiting (True) or module is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Examples:

INST: WaitForAbsolutePosition
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel:= 1, diValue:=200)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel:= 1, diValue:=200);
bVarBOOL2:=Inst.bDone;

Example in FDB:

 14 Function library primo.lib

Page 304 User Manual PMCprimo SoftPLC

WaitForBoundPosition
PMCprimo-Command: WB (Wait for bound position)

Function library: Wait

Available as of version 2.000

Description:

This function block tells PMCprimo to wait until the motor passes the next bound position (positive
or negative direction)

Input variables:

bExecute (BOOL) The value is set in case of a change from 0 to 1
 0 resets the function module and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)

Output variables:

bDone (BOOL) No more waiting (True) or module is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Examples:

INST: WaitForBoundPosition
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel:= 1)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel:= 1);
bVarBOOL2:=Inst.bDone;

Example in FDB:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 305

WaitForRelativePosition
PMCprimo-Command: WR (Wait for relative position)

Function library: Wait

Available as of version 2.000

Description:

This function block tells PMCprimo to wait until it reaches the specified position relative to some
previous position. The position is specified in increments.

The function block WaitForRelativePosition starts a position counter. If the position counter
reaches the value the function block bDone is set to TRUE.

Input variables:

bExecute (BOOL) The value is set in case of a change from 0 to 1
 0 resets the function module and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
diValue (UINT) Relative position for waiting.

Output variables:

bDone (BOOL) No more waiting (True) or module is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Example:

INST: WaitForRelativePosition
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel:= 1, diValue:=3000)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel:= 1, diValue:=3000);
bVarBOOL2:=Inst.bDone;

Example in FDB:

 14 Function library primo.lib

Page 306 User Manual PMCprimo SoftPLC

WaitForStatusMotor
PMCprimo-Befehl: WS (Wait for motor status)

Function library: Wait

Available as of version 2.000

Description:

INST.bDone changes to TRUE if the specified channels goes to state given by INST.diValue.
bVarBool1 must be equal to TRUE, during the command is executed.

Input variables:

bExecute (BOOL) The value is set in case of a change from 0 to 1
 0 resets the function module and the output variables
 are set to False or 0
usiNode (USINT) The node number in the linked system, 0 if only one unit or Host
usiChannel (USINT) The axis number from 1 to n (depending on the system)
diValue (UINT) Motor status for waiting.

Output variables:

bDone (BOOL) No more waiting (True) or module is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Example:

INST: WaitForStatusMotor
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1,usiNode := 0, usiChannel:= 1, diValue:=0)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiNode := 0, usiChannel:= 1, diValue:=0);
bVarBOOL2:=Inst.bDone;

Example in FDB:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 307

SendMail

PMCprimo-command is not available

Function library: Tension

As of version 2.000 available

Description:

With this function block an email can be send.

The system has to be connected with Ethernet to the internet and the IP address of the mail
server has to be known. This is possible with the command ping from windows (example ping
exchange -> result 10.10.1.20). The mail server is different in every company. It’s possible to use
free mail servers in the internet if a firewall is not used to prevent the access (port 25).

After bExecute is set TRUE the email will be send.

Input variables:

bExecute (BOOL) Avter change from 0 to 1 the email will be send.
 0 resets the function module and the output variables
 are set to False or 0
sServer (STRING) mail server address
sFromAddress (STRING) sender of email
sToAddress (STRING) reciever of email
sSubject (STRING) subject text
sMessageText (STRING) message text

Output variables:

bDone (BOOL) Mail was send successfully (True) or mail sending still in progress (False)
bError (BOOL) True: an error occured; False: no error
iErrorNumber (INT) Gives the excact error cause (see GetError page 203)

 14 Function library primo.lib

Page 308 User Manual PMCprimo SoftPLC

Example:

INST: SendMail
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, sServer:=’10.10.1.20’,
 sFromAddress:=’maschine@pilz.de’, sToAddress:=‘hilfe@pilz.de’
 sSubject:=’Test’, sMessageText:=’Hello World’)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, sServer:=’10.10.1.20’,
 sFromAddress:=’maschine@pilz.de’, sToAddress:=‘hilfe@pilz.de’
 sSubject:=’Test’, sMessageText:=’Hello World’);
bVarBOOL2:=Inst.bDone;

Example in FDB:

14 Function library primo.lib

User Manual PMCprimo SoftPLC Page 309

ExecuteSequence

PMCprimo-Command: XS sequence (Execute sequence)

Function library: Tension

Description:

This function module enables the user to call a PMCprimo sequence. A sequence call effects the
immediate execution of the indicated sequence. In case of an error the handling of the sequence
is immediately stopped. A sequence may only be recalled after the complete execution (in case of
non-observance PMCprimo gives the error message „Cannot execute sequence while it is in
use.“. Commands are executed one after another.

Input variables:

bExecute (BOOL) The sequence is started in case of a change from 0 to 1
 0 resets the function module and the output variables >
 are set to False or 0
sName (STRING) Name of th sequence

Output variables:

bDone (BOOL) sequence executed (True) or sequence is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Examples:

INST: ExecuteSequence
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in IL:

CAL INST(bExecute := bVarBOOL1, sName:=’START’)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, sName:=’START’);
bVarBOOL2:=Inst.bDone;

Example in FDB:

 14 Function library primo.lib

Page 310 User Manual PMCprimo SoftPLC

SetModbusAddress

PMCprimo-Befehl: MU

As of version 2.006 available

Description:

This function module sets the modbus number. This is used in a ModBus multidrop net, to
indentify the device.

Input variables:

bExecute (BOOL) If the value is set the function starts working.
 0 resets the function module and the output variables
 are set to False or 0
usiAddress (USINT) The modbus number in the range of values 0 to 255

Output variables:

bDone (BOOL) sequence executed (True) or sequence is still under operation (False)
bError (BOOL) True: an error has occurred; False: no error
iErrorNumber (INT) Indicates the exact error cause (see GetError page 203)

Example:

INST: SetModbusAddress
bVarBOOL1: BOOL;
bVarBOOL2: BOOL;

Example in AWL:

CAL INST(bExecute := bVarBOOL1, usiAddress:=5)
LD INST.bDone
ST bVarBOOL2

Example in ST:

INST(bExecute := bVarBOOL1, usiAddress:=5);
bVarBOOL2:=Inst.bDone;

Example in FUP:

15 Function library primo_tools.lib

User Manual PMCprimo SoftPLC Page 311

15 Function library primo_tools.lib
The functional library primo_tools.lib contains 3 function blocks, which can be included in the
function editor (CFC editor). These function blocks combine the functionality of PDrive and
PMotion with CoDeSys.

Examples:

The function blocks of the primo_tools.lib library are described in a separate manual:
“CoDeSys and Motion Control Tools data exchange via primo.dll”.

 16 Cross reference list PMCprimo-Commands – SoftPLC Functions

Page 312 User Manual PMCprimo SoftPLC

16 Cross reference list PMCprimo-Commands – SoftPLC Functions

PMCprimo-Command SoftPLC-Function Page
$Bx.x (read) GetBusVariable 41
$Bx.x (write) SetBusVariable 43
$Fx.x GetError 203
$Fx.x=0 ResetError 225
$Sx.x GetStatus 212
PMCtendo DD4-Command DriveCommand 66
AA SetAlignmentAcceleration 109
AB AbortMotor 201
AC SetAnalogueControlSetPoint 291
AD SetAnalogueDifferentialGain 295
AE DefineAnalogueLimitErrorOutput 141
AH SetAnalogueInputHighLimit 296
AI SetAnalogueIntegralGain 298
AL SetAnalogueInputLowLimit 297
AM SetAnalogueControlMode 289
AO DefineAuxiliaryOutput 35
AP SetAnalogueProportianalGain 300
AR SetAnalogueRangeDistance 301
AV SetMapAdjustmentVelocity 117
AW SetAnalogueControlWord 292
BA SetMapBaseAdvance 119
BC SetPositionOverflowCounter 135
BL SetBacklashDistance 229
BM SetModbusAddressSetModbusAddres

sSetModbusAddress
310

BO DefineBoundOverflowOutput 143
BR SetMapScaleFromBounds 132
BT SetMapBaseAdvanceTimeConstant 121
CI SetClutchWindow 115
CL SetClutchLength 111
CR CalculateInitialRatio 285
CT SetClutchTime 113
CW SetControlWord 182
DA DisplayAnalogueInput 53
DC SetDeceleration 232
DD DisplayDemandPosition 54
DE DefineMotorErrorOutput 145
DF DisplayReferenceError 58
DP DisplayActualPosition 52
DS DisplaySnapshotPosition 63
DV DisplayVelocity 64
DZ DefineZeroMarkerInput 69
EM DefineMap 90
EW SetErrorOptionsWord 188
FC SetEncoderFeedbackChannel 70
FE DisplayFollowingError 55
FH SetReferenceFalseHighLimit 264
FL SetReferenceFalseLowLimit 266
FR SetFilterOnReference 253
FS SetFeedbackEncoder 76
FW SetReferenceFilterOptionWord 267

16 Cross reference list PMCprimo-Commands – SoftPLC Functions

User Manual PMCprimo SoftPLC Page 313

GF GlobalOff 177
GM GetMappedMasterBound 96
GS GlobalStop 178
GW GetWrapAroundOffset 98
IB InitialisePositionBounds 216
ID InitialiseDemandOffset 179
IN InitialisePosition 214
JB DefineReferenceBackwardOutput 153
JH DefineReferenceForwardOutput 155
KA SetAccelerationFeedForwardGain 181
KD SetDifferentialGain 186
KF SetVelocityFeedForwardGain 196
KI SetIntegralGain 187
KM SetMonitorOutputGain 39
KP SetProportionalGain 185
KV SetVelocityFeedbackGain 195
LH SetHighPositionLimit 190
LL SetLowPositionLimit 191
LW SetMapLinkOptionsWord 125
MA MoveToAbsolutePosition 222
MB SetMapBaseOffset 123
MF SetSlaveMapOffset 138
ML MapLinkSlaveToMaster 104
MM SetAnalogueMasterRangeDistance 201
MO MotorOff 180
MR MoveRelativePosition 220
MR SetAnalogueMasterRangeDistance 299
MS SetEncoderScaling 73
MT SetMapPositionTimeout 131
MW SetMapOptionsWord 127
NB SetNumberOfBits 83
NL MapLinkSlaveToDifferentialMaster 102
OM SetMonitorOutputOffset 40
OR DefineReferenceOutput 157
OW DefineOutsideWindowOutput 147
PA SetPhaseAdvanceFactor 166
PC EnablePositionControl 176
PD CANPositionControlDrive und

CANNetworkPositionControlDrive
45

PD CANPositionControlDrive 45
PH SetPositionOutputHysteresis 170
PO DefinePositionTriggerOutput 149
PS DefinePositionSnapshot 249
PT SetEncoderFilterTime 72
QR GetCanSDO 48
QS SetCanSDO 50
RA DefineReferenceAcceptedOutput 151
RC SetReferenceAcceleration 257
RF SetReferenceOffset 271
RH SetReferenceHoldoffTime 269
RI DefineReferenceInput 251
RJ SetReferencePosition 274
RK SetReferencePositionAtOtherPosition 276
RL SetReferenceRepeatLength 278
RM SetReferenceMode 270

 16 Cross reference list PMCprimo-Commands – SoftPLC Functions

Page 314 User Manual PMCprimo SoftPLC

RN SetReferenceAdvanceFactor 258
RR DefineReferenceRejectOutput 159
RT SetReferenceTimeout 280
RV SetReferenceCorrectionVelocity 260
RW SetReferenceOptionsWord 272
SA SetAcceleration 227
SB SetPositionBound 133
SC SetCreepDistance 230
SE SetMaxPositionError 192
SF SetMonitorOutputFunction 37
SM SetScaleMapping 136
SR SetMaxReferenceCorrection 255
SR SetReferenceErrorLimit 262
SS SetSlowSpeed 236
ST StopMotor 242
STnn StopMotorToPosition 244
SV SetVelocity 240
SW SetWindow 200
TI SetTimeoutForWindow 194
TM TransferMapData 139
TO SetEncoderTimeout 74
UI UndefineInput 282
UL UnlinkSlaveToMaster 140
UO UndefineOutput 173
VC MoveConstantVelocity 218
VH SetVelocityOutputHysteresis 172
VJ SetSlowSpeedMode 238
VM SetVirtualMotorMode 198
VO DefineVelocityOutput 164
VT SetVelocityAveragingTime 65
WE WaitEndState 302
WA WaitForAbsolutePosition 303
WB WaitForBoundPosition 304
WR WaitForRelativePosition 305
WS WaitForStatusMotor 306
XA SetAbortDecelaration 226
XM ExecuteMap 92
XR ExecuteAnalogueDistanceInit 287
XS ExecuteSequence 309
XV ExecuteMapVirtual 94
XX LengthOfAlignmentMove 100
ZC SetPositionCounter 193
ZH SetReferenceTrueHighLimit 266
ZL SetReferenceTrueLowLimit 266
ZW SetMoveOptionsWord 234
ZX DisplayReferenceLengthFalse 59
ZY DisplayReferenceLengthTrue 61

17 Index

User Manual PMCprimo SoftPLC Page 315

17 Index

A
AbortMotor .. 201
acceleration feed forward .. 175
analogue control.. 289
Auxiliary... 34

C
CalculateInitialRatio... 285
CANNetworkPositionControlDrive 45
CANPositionControlDrive .. 45

D
DefineAnalogueLimitErrorOutput............................. 141
DefineAuxiliaryOutput.. 35
DefineBoundOverflowOutput................................... 143
DefineMap... 90
DefineMotorErrorOutput .. 145
DefineOutsideWindowOutput 147
DefinePositionSnapshot .. 249
DefinePositionTriggerOutput 149
DefineReferenceAcceptedOutput............................ 151
DefineReferenceBackwardOutput 153
DefineReferenceForwardOutput.............................. 155
DefineReferenceInput ... 251
DefineReferenceOutput... 157
DefineReferenceRejectOutput 159
DefineTimerOutput .. 161
DefineVelocityOutput... 164
DefineZeroMarkerInput ... 69
DisplayActualPosition.. 52
DisplayAnalogueInput ... 53
DisplayDemandPosition .. 54
DisplayFollowingError ... 55
DisplayPositionBound ... 57
DisplayPositionOverflowCounter 56
DisplayReferenceError .. 58
DisplayReferenceLengthFalse 59
DisplayReferenceLengthTrue.................................... 61
DisplaySnapshotPosition... 63
DisplayVelocity .. 64
DriveCommand ... 66, 67

E
EnablePositionControl... 176
ExecuteAnalogueDistanceInit 287
ExecuteMap .. 92
ExecuteMapVirtual .. 94
ExecuteSequence ... 309

G
GetBusVariable ... 43
GetCanSDO .. 48
GetError .. 203
GetMappedMasterBound .. 96
GetStatus .. 212
GetWrapAroundOffset... 98

GlobalOff ...177
GlobalStop...178

I
InitialiseDemandOffset...179
InitialisePosition...214
InitialisePositionBounds...216
Introduction..7

L
LengthOfAlignmentMove ...100

M
Map..84
MapLinkSlaveToDifferentialMaster102
MapLinkSlaveToMaster ...104
Mapping...84
Master-Operation...84
Motiongenerator...106
MotorOff...180
MoveConstantVelocity ...218
MoveRelativePosition ..220
MoveToAbsolutePosition ...222

P
PhaseAdvanceFactor ..166
Positioncontrol ...175
primo_tools.lib ...311

R
ResetError ...225
Retain-Storage ..26

S
SendMail..307
SetAbortDecelaration...226
SetAcceleration..227
SetAccelerationFeedForwardGain...........................181
SetAlignmentAcceleration..109
SetAnalogueControlMode..289
SetAnalogueControlSetPoint291
SetAnalogueControlWord ..292
SetAnalogueDifferentialGain295
SetAnalogueInputHighLimit296
SetAnalogueInputLowLimit297
SetAnalogueIntegralGain...298
SetAnalogueMasterRangeDistance.........................299
SetAnalogueProportianalGain300
SetAnalogueRangeDistance....................................301
SetBacklashDistance...229
SetBusVariable ..43
SetCanSDO...51
SetClutchLength ..111
SetControlWord ...182
SetCreepDistance..230

 17 Index

Page 316 User Manual PMCprimo SoftPLC

SetDeceleration ...232
SetDifferentialGain...186
SetEncoderFeedbackChannel70
SetEncoderFilterTime ..72
SetEncoderScaling ..73
SetEncoderTimeout ...74
SetErrorOptionsWord...188
SetFeedbackEncoder ..76
SetFilterOnReference ..253
SetHighPositionLimit..190
SetIntegralGain..187
SetLowPositionLimit ..191
SetMapAdjustmentVelocity117
SetMapBaseAdvanceTimeConstant121
SetMapBaseOffset...123
SetMapLinkOptionsWord ...125
SetMapOptionsWord ...127
SetMapPositionTimeout...131
SetMapScaleFromBounds132
SetMaxPositionError ..192
SetMaxReferenceCorrection....................................255
SetModbusAddress ...310
SetMonitorOutputFunction ...37
SetMonitorOutputGain ...39
SetMonitorOutputOffset ...40
SetMoveOptionsWord..234
SetNumberOfBits...83
SetPhaseAdvanceFactor ...166
SetPositionBound ..133
SetPositionCounter ..193
SetPositionOutputHysteresis170
SetPositionOverflowCounter....................................135
SetProportionalGain ..185
SetReferenceAcceleration257
SetReferenceAdvanceFactor...................................258
SetReferenceCorrectionVelocity..............................260
SetReferenceErrorLimit ...262
SetReferenceFalseHighLimit264
SetReferenceFalseLowLimit266
SetReferenceFilterOptionWord................................267
SetReferenceHoldoffTime..269
SetReferenceMode..270
SetReferenceOffset ...271
SetReferenceOptionsWord272
SetReferencePosition ..274
SetReferencePositionAtOtherPosition276

SetReferenceRepeatLength.................................... 278
SetReferenceTimeout ... 280
SetReferenceTrueHighLimit 266
SetReferenceTrueLowLimit..................................... 266
SetScaleMapping .. 136
SetSlaveMapOffset ... 138
SetSlowSpeed... 236
SetSlowSpeedMode.. 238
SetTimeoutForWindow.. 194
SetVelocity .. 240
SetVelocityAveragingTime .. 65
SetVelocityFeedbackGain....................................... 195
SetVelocityFeedForwardGain 196
SetVelocityOutputHysteresis................................... 172
SetVirtualMotorMode .. 198
SetWindow.. 200
StopMotor.. 242
StopMotorToPosition... 244

T
tension control... 289
TransferMapData .. 139
Trapezoidal velocity profile...................................... 222

U
UndefineInput.. 282
UndefineOutput ... 173
UnlinkSlaveToMaster .. 140

V
velocity feedback... 175
velocity feed-forward ... 175
velocity feed-forward gain 196

W
WaitEndState .. 302
WaitForAbsolutePosition... 303
WaitForBoundPosition .. 304
WaitForRelativePosition.. 305
WaitForStatusMotor .. 306

21
 4

71
-0

6,
 2

00
7-

03
 P

ri
nt

ed
 in

 G
er

m
an

y

